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Abstract. In this paper, we obtain pointwise decay estimates in time for massive Vlasov fields on the

exterior of Schwarzschild spacetime. We consider massive Vlasov fields supported on the closure of the

largest domain of the mass-shell where timelike geodesics either cross H+, or escape to infinity. For this

class of Vlasov fields, we prove that the components of the energy-momentum tensor decay like v−
1
3 in the

bounded region {r ≤ R}, and like u− 1
3 r−2 in the far-away region {r ≥ R}, where R > 2M is sufficiently

large. Here, (u, v) denotes the standard Eddington–Finkelstein double null coordinate pair.
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1. Introduction

The Schwarzschild family of black holes is a one-parameter family of spherically symmetric spacetimes,
parametrised by mass M > 0, that satisfy the Einstein vacuum equations

(1) Ricµν [g] = 0.

In this article, we investigate the decay properties of massive collisionless systems on the exterior (E , gM )
of a Schwarzschild black hole background. We consider collisionless systems described statistically by a
distribution function satisfying a transport equation along the timelike geodesic flow. Specifically, we study
the solutions f(x, p) of the massive Vlasov equation on Schwarzschild spacetime

(2) XgM f = 0,

in terms of the generator of the timelike geodesic flow. The distribution function f : P → [0,∞) is a real-
valued function defined on the mass-shell

(3) P :=
{

(x, p) ∈ TE : gx(p, p) = −1, where p is future directed
}
.

A distribution function f is a massive Vlasov field on Schwarzschild if it satisfies (2). We assumed in the
definition of P, that the rest mass of the particles we consider is normalised to be one. The massive Vlasov
equation (2) describes the evolution in time of systems composed by free falling particles. The study of
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massive Vlasov fields on Schwarzschild spacetime is motivated by the research of self-gravitating massive
collisionless systems in general relativity. See [dGvLvW80, And11, AnCGS22] for more information about
relativistic kinetic theory.

In the framework of general relativity, self-gravitating massive collisionless systems are described by the
solutions (M, g, f) of the Einstein–massive Vlasov system

Ricµν [g] − 1

2
R[g] · gµν = 8πTµν [f ],

Xgf = 0,
(4)

in terms of the generator of the timelike geodesic flow. Here, Tµν [f ] denotes the components of the energy-
momentum tensor of the Vlasov field f . The non-linear PDE system (4) reduces to the Einstein vacuum
equations, when the distribution function vanishes. In particular, the members of the Schwarzschild family
satisfy (4). A prominent problem in relativistic kinetic theory consists in describing the behaviour of self-
gravitating massive collisionless systems near the Schwarzschild geometry. In this paper, we investigate
the decay properties of massive Vlasov fields on the exterior of a Schwarzschild background, in view of the
intimate relation of this problem with the stability properties of (4) near Schwarzschild. See [And11, Ren08,
CB09, Rin13] for more information about the Einstein–massive Vlasov system.

The massive Vlasov equation on a Lorentzian manifold (M, g) is a transport equation along the timelike
geodesic flow. For this reason, the linear dynamics of massive Vlasov fields on (M, g) depend strongly on
the particular form of the geodesic flow in this background. In this article, we will study dispersive Vlasov
fields f , in the sense that decay estimates in time hold for the associated energy-momentum tensor Tµν [f ].
The energy-momentum tensor of a distribution function f is defined by

(5) Tµν [f ] :=

∫
Px

f(x, p)pµpνdµPx
,

in terms of the induced volume form on the fibers Px of the mass-shell. The covectors in (5) are defined
by pµ = gµνp

ν . We often write the components of the energy-momentum tensor by Tµν , without making
reference to the corresponding Vlasov field.

In a Schwarzschild black hole, massive Vlasov fields are in general not dispersive. The massive Vlasov
equation (2) admits a large class of non-trivial stationary solutions, which is an obstruction to decay in time.
This is clear from the existence of bounded orbits that do not cross H+. These orbits are called bound
orbits. Localised stationary solutions of the massive Vlasov equation are contained in the closure B of the
subset of the mass-shell where orbits are bound. We circumvent the obstruction to decay posed by these
non-trivial stationary states, by simply considering massive Vlasov fields supported in the closure D of the
complementary region of the mass-shell. The set D can be defined as the closure of the largest domain of
the mass-shell, where timelike geodesics cross H+, or escape to infinity towards the future. The set D is the
largest region of phase space where the problem of studying decay estimates for the massive Vlasov equation
(2) makes sense. However, even for compactly supported initial data, the support of a massive Vlasov field
may go all the way to the boundary ∂D, where non-trivial forms of trapping occur for massive particles. We
call D the dispersive region of the mass-shell.

In this article, we establish decay estimates in time for massive Vlasov fields on Schwarzschild supported
on the dispersive region D of the mass-shell. For this, we first provide an explicit characterisation of the
dispersive region D, which follows from the complete integrability of the geodesic flow in Schwarzschild.
Then, for this class of Vlasov fields we show that the components Tµν [f ] of the energy-momentum tensor

decay like u−
1
3 r−2 in the far-away region {r ≥ R}, and like v−

1
3 in the bounded region {r ≤ R} (under a

suitable normalisation), where R > 2M . Here, (u, v) denotes the standard Eddington–Finkelstein double null
coordinate pair. This result is obtained by proving time decay of the volume of the momentum support of the
distribution function. The proof of this decay property is based on a careful study of the intricate structure
of trapping for the geodesic flow in D. In the mass-shell of Schwarzschild, there are three different forms of
trapping for the geodesic flow in D: unstable trapping, degenerate trapping at the sphere of innermost stable
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circular orbits, and parabolic trapping at infinity1. We observe that these three forms of trapping occur at
the boundary ∂D, whereas only the first and the third ones occur in the interior intD. Our analysis requires
quantitative estimates for the geodesic flow in a neighbourhood of the trapped set on D. In particular, part
of the analysis is carried out in a neighbourhood of the boundary ∂D of the dispersive region. We also exploit
the red-shift effect near the future event horizon H+.

Unstable trapping, degenerate trapping at the sphere of innermost stable circular orbits (ISCO), and
parabolic trapping at infinity, are classical trapping effects for the timelike geodesic flow on black hole
exteriors. See [Cha83, O’N95] for more information in the case of a Kerr black hole background. We hope
that the methods developed in this paper for the analysis of massive Vlasov fields will be helpful when
considering more complicated massive fields on black hole exteriors.

1.1. The main result. Let us present the main decay estimates we obtain for dispersive Vlasov fields on
Schwarzschild. We recall that the well-posedness theory for the massive Vlasov equation on Schwarzschild
spacetime is standard. See Subsection 2.3 for more information on the Cauchy problem for this PDE.

From now on, we use the notation A ≲ B to specify that there exists a universal constant C > 0 such that
A ≤ CB, where C depends on the black hole mass, or other fixed constants. We will often write C > 0 to
denote a general constant depending on the black hole mass, or other fixed constants.

1.1.1. Statement of the main theorem. Fix a parameter M > 0. Let (E , gM ) be the exterior region of a
Schwarzschild black hole background, including the event horizons H+ and H−. We define the dispersive
region D of the mass-shell by

D := clos
{

(x, p) ∈ P : γx,p crosses H+ or r(γx,p(s)) → +∞ as s→ ∞
}
,

where π : P → E is the canonical projection, and γx,p is the unique geodesic with initial data (x, p) on the
black hole exterior. The set D is the largest subset of the mass-shell where decay estimates for massive Vlasov
fields on Schwarzschild hold. See Subsection 4.3.2 for more information.

Let C in ∪Cout be a (bifurcate) initial null hypersurface, such that C in includes its terminal sphere on H+,
and Cout goes out to I+. We define the subset Σ ⊂ D over the initial hypersurface C in ∪ Cout given by

Σ := π−1(C in ∪ Cout) ∩ D.
For almost every (x, p) ∈ Σ, the geodesic γx,p either crosses the future event horizon H+ or escapes to infinity
towards the future, see Subsection 4.3.3. We will consider Vlasov fields for which the initial distribution
functions are supported on Σ. Let us set the nonnegative function Ω2(r) := 1 − 2M

r , and the characteristic
function χD : P → R of the set D. We can now state our main result.

Theorem 1.1. Let f be the solution of (2) on the exterior of Schwarzschild spacetime arising from continuous
compactly supported initial data f0. Let (u, v) be the Eddington–Finkelstein double null pair. For R > 2M
sufficiently large, the components of the energy-momentum tensor Tµν [fχD] of the Vlasov field fχD satisfy

(6) Tuu ≲
∥f0∥L∞

x,p

u
1
3 r2

, Tuv ≲
∥f0∥L∞

x,p

u
1
3 r2

, Tvv ≲
∥f0∥L∞

x,p

u
1
3 r2

,

for all x ∈ {r ≥ R}, and

(7)
Tuu

Ω4
≲

∥f0∥L∞
x,p

v
1
3

,
Tuv

Ω2
≲

∥f0∥L∞
x,p

v
1
3

, Tvv ≲
∥f0∥L∞

x,p

v
1
3

,

for all x ∈ {r ≤ R}. Similar estimates hold for the other components of the energy-momentum tensor.

Remark 1.1.1. (a) The decay rates are related to the behaviour of timelike geodesics in a neighbourhood
of {pt = −1}, where parabolic trapping at infinity holds. We will show that the outgoing orbits in

{pt = −1} satisfy r(t) ∼ t
2
3 and pr(t) ∼ t−

1
3 . In a neighbourhood of {pt = −1}, we find bounded

1By an abuse of terminology, we speak about parabolic trapping at infinity despite that this form of trapping does not occur
in the bounded region of spacetime.
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orbits that spend arbitrarily long periods of time in the far-away region before crossing H+. This
effect makes the slow dispersion towards infinity on {pt = −1} become relevant even in the bounded
region. The particle energy value pt = −1 corresponds to the rest mass of the particles in the system.

(b) The components Tµν of the energy-momentum tensor have different Ω2 normalisations in the esti-
mates on the bounded region. This discrepancy is due to the different Ω2 normalisations for the
covectors pu and pv near H+. We recall that the estimates (6)–(7) are stated using Eddington–
Finkelstein double null coordinates on the black hole exterior. The normalised expressions in the
LHS of the estimates in (7) correspond to regular quantities along H+.

Remark 1.1.2. The distribution function fχD satisfies the massive Vlasov equation, because χD(x, p) is
conserved along the geodesic flow. This property follows from the invariance of D under the geodesic flow.

As additional results of the article, we will also show improved decay estimates specialised to the cases
of compactly supported data on {−pt > 1}, and data supported up to the boundary of {−pt ≥ 1}. The
improved decay estimates in these domains will show interesting dispersive features of massive Vlasov fields
on Schwarzschild. Being compactly supported in the set {−pt > 1} will make the Vlasov fields behave
similarly to massless Vlasov fields on a fixed Schwarzschild background. On the other hand, we will consider
compactly supported Vlasov fields in the region {−pt ≥ 1}, where parabolic trapping at infinity can also
occur. These two results will be stated and further discussed in Section 3.

1.2. Key ingredients of the proof. Let us discuss the key ingredients to establish Theorem 1.1.
We obtain quantitative decay estimates by proving the decay in time of the volume of the momentum

support of the distribution function. Even though one can expect decay for massive Vlasov fields supported
on the dispersive region D to hold, obtaining quantitative estimates is a difficult task because of the complexity
of the trapped set on D. We will show that the decay of the momentum support of the Vlasov fields holds,
because of the concentration of the momentum support in suitable distributions of phase space. These
distributions correspond to the tangent space of the stable manifolds associated to the trapped set on D.

1.2.1. Intricacies of the trapped set on D. For the timelike geodesic flow in Schwarzschild spacetime, we find
three different forms of trapping on D: unstable trapping, degenerate trapping at the sphere of innermost
stable circular orbits (ISCO), and parabolic trapping at infinity. Let us discuss some key features of these
forms of trapping:

• Unstable trapping. This occurs at all spheres of the form {r = r−} with r− ∈ (3M, 6M). We remark
the existence of homoclinic orbits for the spheres of trapped orbits {r = r−} with r− ∈ (4M, 6M).
These homoclinic orbits are also trapped, and can spend arbitrarily long periods of time in the far-
away region before approaching back a sphere of trapped orbits. The trapped orbits over the spheres
{r = r−} with r− ∈ [4M, 6M), and the associated homoclinic orbits, are at the boundary ∂D. On
the contrary, the trapped orbits over the spheres {r = r−} with r− ∈ (3M, 4M), are in intD.

• Degenerate trapping at ISCO. The degenerate trapping effect at ISCO takes place at the sphere
{r = 6M}, where the unstable trapping effect degenerates. As a result, the local dispersion estimates
are only inverse polynomial near {r = 6M}. We note that the trapped orbits over the sphere
{r = 6M}, are at the boundary ∂D.

• Parabolic trapping at infinity. This occurs at spheres of trapped orbits at infinity, where pt = −1.
For orbits in {pt > −1} with angular momentum less than 4M , we find bounded orbits that spend
arbitrarily long periods of time in the far-away region before crossing H+. This property lies at the
heart of the estimates stated in Theorem 1.1. The orbits in the set {pt = −1} correspond to parabolic
orbits in analogy with the classification of orbits for the two-body problem in classical mechanics.
We note that the trapped orbits over the spheres at infinity with angular momentum greater or equal
to 4M , are at the boundary ∂D. On the contrary, the trapped orbits over the spheres at infinity with
angular momentum smaller to 4M , are in the interior intD.
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The proof of the decay estimates in Theorem 1.1 boils down to show suitable concentration estimates on
the stable manifolds associated to the three previous forms of trapping. Let us mention the key mechanisms
that allow us to obtain these estimates.

1.2.2. Mechanisms behind the concentration estimates. First, we show local dispersion near the spheres of
unstable trapped orbits, by using the normal hyperbolicity of the geodesic flow. This analysis is particularly
delicate near the homoclinic orbits, where we also need to exploit the degenerate dispersion near {r = 6M}
associated to the degenerate trapping at ISCO, and the dispersion at infinity near {pt = −1} associated
to the parabolic trapping at infinity. Secondly, we show local dispersion near the sphere of trapped orbits
{r = 6M}, by using the parabolic behaviour of the timelike geodesic flow in this regime. Finally, we obtain
decay in time in a neighbourhood of {pt = −1}, by using the parabolic trapping at infinity. For this, suitable
McGehee type coordinates are useful to study the radial flow. We also exploit the red-shift effect to show
decay in a neighbourhood of H+.

Putting together the concentration estimates on the stable manifolds leads to the proof of Theorem 1.1.

1.3. Related works on confined Vlasov fields. We overview some recent linear and non-linear results
concerning confined Vlasov fields.

1.3.1. Linear stability results for non-trivial stationary states on black hole exteriors. Phase mixing is a
mechanism that leads to the weak convergence of Vlasov fields towards non-trivial stationary states. Phase
mixing results without a rate for massive Vlasov fields on the closure of the complement P \ D have been
shown by Rioseco–Sarbach [RS20]. See also [RS24] for phase mixing results for massive fields on the exterior
of Kerr black holes.

We also mention the work by Günther–Rein–Straub [GRS22] which has shown the existence of linearly
stable small matter shell solutions of the spherically symmetric Einstein–massive Vlasov system. This result
is based on the Birman–Schwinger principle.

1.3.2. Stationary bifurcations of Schwarzschild for the Einstein–massive Vlasov system. The Einstein–massive
Vlasov system admits one-parameter families of stationary spherically symmetric solutions bifurcating from
Schwarzschild [Rei94, Jab21]. Also, one-parameter families of stationary axisymmetric solutions of the
Einstein–massive Vlasov system bifurcating from Kerr spacetimes have been constructed by Jabiri [Jab22].

1.3.3. Quantitative phase mixing for inhomogeneous equilibria. Quantitative phase mixing estimates in the
closure of the complement P \ D have not been shown yet. However, quantitative estimates have been
shown for related Vlasov equations. Recently, linear and non-linear phase mixing has been obtained for the
Vlasov–Poisson system with an external Kepler potential by Chaturvedi–Luk [CL24]. Quantitative linear
phase mixing estimates are shown outside symmetry, and also long-time nonlinear phase mixing for spher-
ically symmetric data. Also, quantitative estimates have been derived for the solutions to linear transport
equations driven by a general family of Hamiltonians in [HRSS24]. See also [CL22] and [MRVDB22] for other
quantitative estimates for the solutions of Vlasov equations with anharmonic potentials.

1.4. Related works on dispersive Vlasov fields. We discuss works on related dispersive Vlasov fields.

1.4.1. Asymptotic stability of Minkowski for the Einstein–massive Vlasov system. Minkowski spacetime is
the simplest solution of the Einstein vacuum equations. This spacetime corresponds to a member of the
Schwarzschild family for which the mass parameter vanishes. The problem of describing the non-linear
dynamics of self-gravitating collisionless systems near Minkowski has been resolved.

The asymptotic stability of Minkowski for the Einstein–massive Vlasov system was obtained independently
in the seminal works by Lindblad–Taylor [LT20] and Fajman–Joudioux–Smulevici [FJS21]. The work [FJS21]
estimates the Vlasov field by using a weighted commuting vector field method based on Sobolev inequalities.
On the other hand, the work [LT20] estimates the Vlasov field by using a vector field method and quantitative
estimates for the timelike geodesic flow. See also the stability result by Wang [Wan22] which estimates the



6 RENATO VELOZO RUIZ

Vlasov field using Fourier techniques. Previously, Rein–Rendall [RR92] proved the non-linear stability of
Minkowski for the Einstein–massive Vlasov system under spherically symmetric perturbations.

1.4.2. Decay for massless Vlasov fields on black hole exteriors. Massless collisionless systems are another class
of systems of interest in relativistic kinetic theory. In these, the rest mass of their particles vanishes. The
problem of establishing decay for massless Vlasov fields on black hole exteriors has been previously studied.

First, Andersson–Blue–Joudioux [ABJ18] studied massless fields on very slowly rotating Kerr black holes.
Boundedness of a weighted energy norm, and a degenerated integrated energy decay estimate were derived.
This work does not provide pointwise decay for momentum averages. Later, Bigorgne [Big23] adapted the
rp-weighted energy method of Dafermos–Rodnianski, to show polynomial decay of momentum averages for
massless fields on Schwarzschild. For this, polynomial decay for a non-degenerate energy flux was shown.

More recently, [VR23] shows a non-linear stability result of Schwarzschild for the Einstein–massless Vlasov
system under spherically symmetric perturbations. This result uses the normal hyperbolicity of the trapped
set for the null geodesic flow to show decay for the energy-momentum tensor. Here, the components of
the energy-momentum tensor are proved to decay exponentially in the bounded region of spacetime. On
the other hand, Weissenbacher [Wei23] proved decay of momentum averages for massless Vlasov fields on
subextremal and extremal Reissner–Nordström spacetimes. In the extremal case, when the Vlasov field and
its first time derivative are initially supported on a neighbourhood of H+, the transversal derivative of a
suitable component of the energy-momentum tensor does not decay along H+. The works [VR23, Wei23] are
based on phase space volume estimates.

Finally, in joint work with Bigorgne [BVR24], a commutation vector field approach is developed to study
the decay for massless Vlasov fields on Schwarzschild spacetime using a weighted energy method. Here, the
hyperbolicity of the trapped set is used to construct a suitable W 1,1

x,p norm for which solutions to the massless
Vlasov equation verify an integrated local energy decay estimate without relative degeneration. As a result,
time decay is established for a first order energy norm using the rp-method.

A central difficulty in the analysis of massless Vlasov fields on black hole exteriors is the unstable trapping
effect of the null geodesic flow. This phenomenon also occurs for the timelike geodesic flow on Schwarzschild.

1.4.3. Decay for Vlasov equations on backgrounds with hyperbolic flows. Motivated by the unstable trapping
phenomenon, decay estimates have been studied for Vlasov fields on backgrounds with hyperbolic flows. The

small data solutions for the Vlasov–Poisson system with the repulsive potential −|x|2
2 , for which unstable

trapping occurs for the associated Hamiltonian flow, were studied in [VRVR24, BVRVR23]. Global existence
in dimension n ≥ 2 was obtained in the former work, and the scattering properties in dimension two were
addressed in the latter one. Also, [VRVR23] studied decay estimates for Vlasov fields on non-trapping
asymptotically hyperbolic manifolds. These works are based on commuting vector fields approaches.

1.5. Related work on extremal black hole formation as a critical phenomenon. On recent work
Kehle–Unger [KU24] proved that extremal black holes arise on the threshold of gravitational collapse. This
article constructs one-parameter families of smooth spherically symmetric solutions of the Einstein–Maxwell–
Vlasov system that interpolate between dispersion and collapse, and for which the critical solution is an
extremal black hole. This work makes use of fine-tuned beams of self-gravitating collisionless charged particles.
Suitable decay estimates for the energy-momentum tensor of the Vlasov matter are part of the analysis.

1.6. Outline of the paper. The rest of the article is structured as follows.

• Section 2. We set up the geometric framework to study massive Vlasov fields on Schwarzschild
spacetime. We review the formulation of the initial value problem for the massive Vlasov equation.

• Section 3. We state detailed versions of the main results of the article. We also provide a detailed
summary of the proof of Theorem 1.1.

• Section 4. We review the complete integrability of the geodesic flow in Schwarzschild. We show an
explicit characterisation of D. We describe the trapped set for the timelike geodesic flow on D. We
show some dispersive properties of the geodesic flow in the near-horizon and the far-away regions.
We show a priori estimates for the momentum coordinates along timelike geodesics.
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• Section 5. We study in detail the properties of the different forms of trapping for the timelike
geodesic flow in D. We identify suitable defining functions for the corresponding stable manifolds.
We also obtain suitable expansion and contraction properties along the geodesic flow.

• Section 6. We establish concentration estimates on the stable manifolds for the different forms of
trapping of the geodesic flow. The estimates here are satisfied in a neighbourhood of the trapped set.

• Section 7. We prove the main results of the article. We first obtain a priori estimates in the
near-horizon region. Later, we use the concentration estimates to show decay in time for Tµν [f ].

1.7. Acknowledgements. I would like to express my gratitude to Mihalis Dafermos and Clément Mouhot
for their continued guidance and encouragements. I also would like to thank Jonathan Luk and Jacques Smule-
vici, for several insightful discussions and corrections. Finally, I thank Léo Bigorgne and Yakov Shlapentokh-
Rothman for many helpful discussions. I have received partial funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie grant 101034255.

2. Preliminaries

In this section, we recall the basic properties of massive Vlasov fields on the exterior of Schwarzschild.

2.1. The exterior of Schwarzschild spacetime. The Schwarzschild family of black holes is a one-parameter
family of stationary four dimensional Lorentzian manifolds. This family is parametrised by the black hole
mass M ∈ R. From now on, we fix M > 0.

2.1.1. In Kruskal double null coordinates. Let us define the differential structure and the metric of the exterior
region of Schwarzschild in terms of Kruskal coordinates. We denote by E the exterior of the maximally
extended Schwarzschild spacetime. We define the manifold with corners E in Kruskal double null coordinates
(U, V, θ, ϕ) as

E :=
{

(U, V, θ, ϕ) ∈ (−∞, 0] × [0,∞) × S2
}
.

This coordinate system is global up to the usual degeneration of the spherical variables. The boundary of E
consists of the two hypersurfaces

H+ := {0} × (0,∞) × S2, H− := (−∞, 0) × {0} × S2,

and the two-sphere S2bif := {U = V = 0}. We refer to H+ and H−, as the future and the past event horizon,
respectively.

Fix M > 0. Let r(U, V ) be the function implicitly defined by

−UV = e
r

2M (
r

2M
− 1).

We also define Ω2
K(U, V ) = 8M3

r(U,V )e
− r(U,V )

2M . In the Kruskal coordinate system, the Schwarzschild metric gM
is defined as

gM = −2Ω2
K(U, V )(dU ⊗ dV + dV ⊗ dU) + r2(U, V )gS2 ,

where gS2 = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ is the round metric on the unit sphere S2. The hypersurfaces H+ and
H− are null with respect to gM . We set the time-orientation in (E , gM ) so that ∂U + ∂V is future directed.

See [Syn50, Kru60] for more information about the full maximal extension of Schwarzschild spacetime.

2.1.2. In Eddington–Finkelstein double null coordinates. We cover the interior of E by using Eddington–
Finkelstein double null coordinates (u, v, θ, ϕ) given by

U = − exp
(
− u

2M

)
, V = exp

( v

2M

)
.

In the coordinate system (u, v, θ, ϕ), the Schwarzschild metric takes the form

gM = −2Ω2(u, v)(du⊗ dv + dv ⊗ du) + r2(u, v)gS2 , Ω2(u, v) := 1 − 2M

r
,
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where the function r(u, v) is implicitly defined by

e
v−u
2M = e

r
2M

( r

2M
− 1

)
.

Setting t = u+ v, the metric g in Schwarzschild coordinates (t, r, θ, ϕ) takes the usual form

gM = −Ω2(r)dt⊗ dt+
1

Ω2(r)
dr ⊗ dr + r2gS2 , Ω2(r) := 1 − 2M

r
.

In Eddington–Finkelstein double null coordinates, the constant v and u level sets define two families of
null hypersurfaces: the incoming family {Cv}, and the outgoing family {Cu}. The coordinates (u, v, θ, ϕ)
do not cover the future event horizon H+, neither the future null infinity I+. However, we can formally
parametrise H+ by (∞, v, θ, ϕ), and I+ by (u,∞, θ, ϕ). The same happens for the past event horizon H−,
and the past null infinity I−. We can formally parametrise H− by (u,−∞, θ, ϕ), and I− by (−∞, v, θ, ϕ).
See Figure 1 for the Penrose diagram of the exterior region.

I+H+

i+

i−

Cv Cu

H− I−

i0

Figure 1. Penrose diagram of the exterior region E .

In the coordinate system (u, v, θ, ϕ), the non-vanishing Christoffel symbols Γα
βγ are given by

Γu
uu = −2M

r2
, Γv

vv =
2M

r2
, Γu

AB =
1

2
r(gS2)AB , Γv

AB = −1

2
r(gS2)AB ,

ΓA
Bu = −r − 2M

r2
δAB , ΓA

Bv =
r − 2M

r2
δAB , Γθ

ϕϕ = − sin θ cos θ, Γϕ
θϕ = cot θ.

where the latin indices A and B correspond to the spherical coordinates of spacetime.
The reader can consult [HE73, Wal84] for more information about the geometry of Schwarzschild spacetime.

2.1.3. Killing fields of Schwarzschild spacetime. The interior of (E , gM ) is stationary since ∂t is a Killing
vector field that is timelike in {r > 2M}. In Eddington–Finkelstein double null coordinates, this timelike
Killing field is given by

∂t =
1

2
(∂u + ∂v).

The vector field ∂t extends to a smooth Killing vector field on H+. Moreover, it is null and normal to H+.
On the other hand, Schwarzschild is spherically symmetric since

(8) Ω1 = ∂ϕ, Ω2 = cosϕ∂θ − sinϕ cot θ ∂ϕ, Ω3 = − sinϕ∂θ − cosϕ cot θ ∂ϕ,

are spacelike Killing fields generating a smooth action by isometries of SO(3).
The Lie algebra of Killing fields of Schwarzschild is exactly the one generated by ∂t, Ω1, Ω2, and Ω3.

2.2. The massive Vlasov equation on Schwarzschild. Let us review the basic properties of the timelike
geodesic flow and the massive Vlasov equation on Schwarzschild.
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2.2.1. The timelike geodesic flow in Schwarzschild. The motion of free falling particles on Schwarzschild
spacetime is described by its geodesic flow. Let (xα) be a local coordinate system on Schwarzschild with dual
momentum coordinates (pα) on the fibers of TE . We recall that (xα) is dual to (pα) on TE , if pα = dxα(p) for
any p ∈ TxE . A coordinate system (xα, pα) on TE with (xα) dual to (pα) is called canonical. In a canonical
coordinate system on TE , the geodesic flow is determined by the geodesic equations

(9)
dxα

ds
= pα,

dpα

ds
= −Γα

βγp
βpγ ,

where Γα
βγ are the Christoffel symbols of gM with respect to (xα), and s parametrises the geodesic flow.

Given m > 0, we define the subset Pm ⊂ TE of the tangent bundle as

Pm :=
{

(x, p) ∈ TE : gx(p, p) = −m2, where p is future directed
}
.

The set Pm ⊂ TE is a smooth seven dimensional submanifold, since it is the level set of a smooth function
with non-vanishing gradient. We observe that Pm is invariant under the geodesic flow. By the condition
gx(p, p) = −m2, the momentum vectors in the fibers of Pm are timelike. For a timelike geodesic γ in Pm,
the value m denotes the rest mass of a free falling particle following γ.

In relativistic kinetic theory is standard to consider systems composed by particles with a fixed rest mass
m. From now on, we consider systems composed by particles whose rest mass is normalised to be one. Under
this normalisation, we denote P := P1. We refer to P as the mass-shell, and to the identity gx(p, p) = −1 as
the mass-shell relation. We denote the canonical projection by π : P → E .

2.2.2. The massive Vlasov equation. In this paper, we study collisionless systems on Schwarzschild spacetime.
These systems are statistically described by a non-negative measure f(x, p)dµP that is absolutely continuous
with respect to the induced volume form on P. For collisionless systems fdµP , the distribution functions f
are called Vlasov fields.

Definition 2.2.1. A Vlasov field on Schwarzschild f is a non-negative distribution function on TE that is
constant along the geodesics in spacetime. A Vlasov field f supported on P is called a massive Vlasov field
on Schwarzschild.

By Definition 2.2.1, in any canonical coordinate system (xα, pα) on TE , a sufficiently regular Vlasov field
f satisfies the Vlasov equation on Schwarzschild

(10) XgM f := pα∂xαf − pαpβΓγ
αβ∂pγf = 0,

where Γα
βγ are the Christoffel symbols of gM in the given coordinate chart. The vector field XgM is independent

of the chosen coordinate system. Note that XgM is tangent to the mass-shell, since P is invariant under the
geodesic flow. The vector field XgM ∈ Γ(TTE) is the generator of the geodesic flow.

The energy-momentum tensor Tµν [f ] of a Vlasov field f is the symmetric (0, 2) tensor field

(11) Tµν [f ] :=

∫
Px

f(x, p)pµpνdµPx
,

where Px are the fibers of the mass-shell, and pµ = gµνp
ν . The components of Tµν are the second moments of

the distribution function with respect to the momentum variable. For a Vlasov field f , the energy-momentum
tensor Tµν satisfies the conservation law

∇µTµν = 0.

Both, the dominant and the strong energy conditions for Vlasov matter follow from the definition of the
energy-momentum tensor.

Similarly, the particle current Nµ of a Vlasov field f is the one-form

Nµ :=

∫
Px

f(x, p)pµdµPx
.
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The components of Nµ are first moments of the distribution function. For a Vlasov field f , the particle
current Nµ satisfies the conservation law

∇µNµ = 0.

By considering higher order moments of the distribution function, one can define higher order tensor fields
that also satisfy conservation laws for a Vlasov field f . See [CB09, Chapter 10] for more information.

Remark 2.2.1. We will consider smooth Vlasov fields f which are compactly supported in the momentum
variables for any x ∈ E . Under this hypothesis, moments of the distribution function are smooth maps. In
particular, Tµν(x) and Nµ(x) are smooth tensor fields on Schwarzschild.

In the canonical coordinate system (u, v, θ, ϕ, pu, pv, pθ, pϕ) on TE , the Vlasov equation on Schwarzschild
spacetime is

pu∂uf + pv∂vf + pθ∂θf + pϕ∂ϕf +
(2M

r2
(pu)2 − ℓ2

2r3

)
∂puf +

(2M

r2
(pv)2 +

ℓ2

2r3

)
∂pvf

+
(
− 2prpθ

r
+ sin θ cos θ(pϕ)2

)
∂pθf +

(
− 2prpϕ

r
− 2 cot θpθpϕ

)
∂pϕf = 0,

where ℓ2 := r4(gS2)ABp
ApB . We will consider smooth massive Vlasov fields, that is, Vlasov fields supported

on P. In this coordinate system, the mass-shell P over Schwarzschild is

P =
{

(x, p) ∈ TE : 4Ω2pupv = 1 + r2(gS2)ABp
ApB , where p is future directed

}
.

Moreover, the mass-shell relation can be written as

4Ω2pupv = 1 +
ℓ2

r2
.

The canonical coordinate system (u, v, θ, ϕ, pu, pv, pθ, pϕ) on TE induces a coordinate system (u, v, θ, ϕ, pv,
pθ, pϕ) on the mass-shell P, where pu is defined by the mass-shell relation as

pu =
1

4Ω2pv

(
1 +

ℓ2

r2

)
.

The components Tµν of the energy-momentum tensor of a smooth Vlasov field f can be expressed in this
coordinate system as

(12) Tµν =

∫
{4Ω2pupv=1+ ℓ2

r2
}
f(x, p)pµpν

r2
√

det γ

pv
dpvdpAdpB ,

in terms of the volume form on the fibers of the mass-shell. One can write similarly the components Nµ of
the particle current in local coordinates.

2.3. The initial value problem for the Vlasov equation. Let u0, v0 ∈ R. Let C in ∪ Cout be a bifurcate
null hypersurface, where C in := [u0,∞] × {v = v0} × S2 is an incoming hypersurface penetrating the future
event horizon H+, and Cout := {u = u0} × [v0,∞) × S2 is a complete outgoing hypersurface going out to
I+. The light cones C in and Cout intersect transversely at the spacelike two-sphere S2u0,v0

. We will consider
initial data f0 for the massive Vlasov equation on the subset of the mass-shell over C in ∪ Cout.

The well-posedness of the massive Vlasov equation (10) follows by using the regularity of the flow map,
and the standard representation formula of Vlasov fields in terms of the geodesic flow. For this, we consider
the regular canonical coordinate system (U, V, θ, ϕ, pU , pV , pθ, pϕ) on the mass-shell P, which is induced by
the coordinate system (U, V, θ, ϕ) in the exterior region E .

Proposition 2.3.1. Let f0 : π−1(C in ∪ Cout) → R be a continuous function with respect to the regular
coordinate system in P. Then, there exists a unique solution of XgM f = 0 in π−1({x ∈ E : u ≥ u0, v ≥ v0})
such that f |π−1(Cin ∪Cout) = f0. Moreover, the function f : π−1({u ≥ u0, v ≥ v0}) → R is continuous with
respect to the regular coordinate system in P.
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Let S be a suitable Cauchy hypersurface for the exterior region, including its terminal sphere on H+, and
going out to I+. The massive Vlasov equation is also well-posed on the black hole exterior E with continuous
initial data f0 on π−1(S). The main results of this article apply to both, Vlasov fields with initial data
supported on π−1(C in ∪ Cout), and Vlasov fields with initial data supported on π−1(S). In the rest of the
paper, we will only consider initial data f0 supported on π−1(C in ∪ Cout) for the sake of clarity.

3. The main results

We state a detailed version of our main result. We also state two other theorems concerning the improved
decay estimates specialised to the cases of compactly supported data on {−pt > 1}, and data supported up
to the boundary of {−pt ≥ 1}. We conclude this section with a summary of the proof of the main result.

3.1. Conserved quantities along the geodesic flow. The Vlasov equation on Schwarzschild is a transport
equation along the geodesic flow in this background. This Hamiltonian flow can be studied in great detail
since it is completely integrable. By the stationarity and the spherical symmetry of this background, there
exist three non-trivial integrals of motion for the geodesic flow: the particle energy E(x, p), the total angular
momentum ℓ(x, p), and the azimuthal angular momentum ℓϕ(x, p). These conserved quantities are

E(x, p) = Ω2(r)pt, ℓ(x, p) = r2
√

(pθ)2 + sin2 θ(pϕ)2, ℓϕ(x, p) = r2 sin2 θpϕ,

in Schwarzschild coordinates. The complete integrability of the geodesic flow in Schwarzschild follows by
considering these integrals of motion. See Section 4 for more information.

3.2. Decay for Vlasov fields compactly supported on D0. Let us consider Vlasov fields supported on
the subset D0 of the mass-shell

D0 :=
{

(x, p) ∈ P : E(x, p) > 1
}
.

The domain D0 is invariant under the geodesic flow, since E(x, p) is an integral of motion. In this region of
phase space, there is a normally hyperbolic trapped set contained in D0 ∩ {ℓ > 4M}. See Subsection 4.2 for
more information.

Let C in ∪ Cout be a (bifurcate) initial null hypersurface, such that C in terminates at H+, and Cout goes
out to I+. We define the subset Σ0 ⊂ D0 over the initial hypersurface C in ∪ Cout given by

Σ0 := π−1(C in ∪ Cout) ∩ D0.

For almost every (x, p) ∈ Σ0, the timelike geodesic γx,p either crosses the future event horizon H+ or escapes to
infinity towards the future, see Subsection 4.3. We will consider Vlasov fields for which the initial distribution
functions are supported on Σ0. We can now state our first result.

Theorem 3.1. Let f be the solution of (10) on the exterior of Schwarzschild spacetime arising from con-
tinuous initial data f0 compactly supported on Σ0. Let (u, v) be the Eddington–Finkelstein double null pair.
For R > 2M sufficiently large, the components of the energy-momentum tensor Tµν [f ] satisfy

Tuu ≲
∥f0∥L∞

x,p

u3
, Tuv ≲

∥f0∥L∞
x,p

u3
, Tvv ≲

∥f0∥L∞
x,p

u3
,

for all x ∈ {r ≥ R}, and

(13)
Tuu

Ω4
≲

∥f0∥L∞
x,p

exp( 1
4
√
2M

v)
,

Tuv

Ω2
≲

∥f0∥L∞
x,p

exp( 1
4
√
2M

v)
, Tvv ≲

∥f0∥L∞
x,p

exp( 1
4
√
2M

v)
,

for all x ∈ {r ≤ R}. Similar estimates hold for the other components of the energy-momentum tensor.

Remark 3.2.1. (a) We obtain exponential decay for the components of the energy-momentum tensor in
the bounded region {r ≤ R}, because of the normal hyperbolicity of the trapped set for the geodesic

flow in D0. In the bounded region, we obtain exponential decay with the rate (4
√

2M)−1 that
corresponds to the Lyapunov exponent of the hyperbolic fixed point (r = 4M, pr = 0) of the radial
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flow. The inverse polynomial decay in the far-away region {r ≥ R} coincides with the decay rate for
the components of the energy-momentum tensor for massive Vlasov fields on Minkowski.

(b) The components Tµν of the energy-momentum tensor have different Ω2 normalisations in the esti-
mates on the bounded region. This discrepancy is due to the different Ω2 normalisations for the
covectors pu = −2Ω2pv and pv = −2Ω2pu near H+, when working in Eddington–Finkelstein coordi-
nates. We recall that Ω2pu and pv are regular quantities on H+, since the vector fields Ω−2∂u and
∂v extend regularly to non-vanishing vector fields on H+. The normalised expressions in the LHS of
the estimates in (13) correspond to regular quantities in the regular coordinate system (U, V, θ, ϕ).

The exponential decay in Theorem 3.1 can be compared with the exponential decay for massless Vlasov
fields on Schwarzschild provided in [Wei23, VR23, BVR24].

3.3. Decay for Vlasov fields supported up to the boundary of D1. Let us consider Vlasov fields
supported on the subset D1 of the mass-shell

D1 :=
{

(x, p) ∈ P : E(x, p) ≥ 1
}
.

The domain D1 is invariant under the geodesic flow since E(x, p) is an integral of motion. In this region,
apart from the normally hyperbolic trapped set contained in D1 ∩ {ℓ ≥ 4M}, we find the parabolic-type
trajectories on the set {E = 1}. As a result, the decay rates of the energy-momentum tensor in the far-away
region change drastically.

Let C in ∪ Cout be a (bifurcate) initial null hypersurface, such that C in terminates at H+, and Cout goes
out to I+. We define the subset Σ1 ⊂ D1 over the initial hypersurface C in ∪ Cout given by

Σ1 := π−1(C in ∪ Cout) ∩ D1.

For almost every (x, p) ∈ Σ1, the timelike geodesic γx,p either crosses the future event horizon H+ or escapes to
infinity towards the future, see Subsection 4.3. We will consider Vlasov fields for which the initial distribution
functions are supported on Σ1. Let χD1

: P → R be the characteristic function of the set D1.

Theorem 3.2. Let f be the solution of (10) on the exterior of Schwarzschild spacetime arising from con-
tinuous compactly supported initial data f0. Let (u, v) be the Eddington–Finkelstein double null pair. For
R > 2M sufficiently large, the components of the energy-momentum tensor Tµν [fχD1

] of the Vlasov field
fχD1

satisfy

Tuu ≲
∥f0∥L∞

x,p

u
5
3

, Tuv ≲
∥f0∥L∞

x,p

u
5
3

, Tvv ≲
∥f0∥L∞

x,p

u
5
3

,

for all x ∈ {r ≥ R}, and

Tuu

Ω4
≲

∥f0∥L∞
x,p

exp( 1
4
√
2M

v)
,

Tuv

Ω2
≲

∥f0∥L∞
x,p

exp( 1
4
√
2M

v)
, Tvv ≲

∥f0∥L∞
x,p

exp( 1
4
√
2M

v)
,

for all x ∈ {r ≤ R}. Similar estimates hold for the other components of the energy-momentum tensor.

Remark 3.3.1. The decay in time for the energy-momentum tensor in the far-away region is slower than the
one stated in Theorem 3.1. By considering massive Vlasov fields supported all the way up to {E = 1}, the
decay rate in the far-away region changes drastically. The decay rate in the far-away region is closely related
with the property that for outgoing orbits on {E = 1}, we have r(t) ∼ t

2
3 and pr(t) ∼ t−

1
3 . This decay rate

is slower than the one for massive Vlasov fields on Minkowski.

3.4. Decay for Vlasov fields supported up to the boundary of D. The main result of this article shows
quantitative decay for the components of the energy-momentum tensor of massive Vlasov fields supported
on D. We recall that the dispersive region D is defined by

D := clos
{

(x, p) ∈ P : γx,p crosses H+ ∪H− or r(γx,p(s)) → +∞ as s→ ±∞
}
,

where π : P → E is the canonical projection, and γx,p is the unique geodesic with initial data (x, p).
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The dispersive region D can be characterised in terms of the radii r±(ℓ) of the unique spheres {r = r±(ℓ)},

where circular orbits with angular momentum ℓ are contained. For all ℓ ∈ [2
√

3M,∞), there exist geodesics
with angular momentum ℓ contained in {r = r±(ℓ)}, where r±(ℓ) are defined as the roots of

(14) r2 − ℓ2

M
r + 3ℓ2 = 0,

with r−(ℓ) ≤ r+(ℓ). We recall that the geodesics in {r = r±(ℓ)} are called circular orbits. We denote the
particle energy of the circular orbits in {r = r±(ℓ)} by E±(ℓ). In terms of these quantities, the region D can
be characterised as

D =
{

(x, p) ∈ P : ℓ(x, p) ≥ 4M such that if E(x, p) < 1 then r < r−(ℓ)
}

(15)

∪
{

(x, p) ∈ P : ℓ(x, p) < 4M such that if E(x, p) ≤ E−(ℓ) then r ≤ r−(ℓ)
}
.

See Subsection 4.3 for a proof of this. The set D is invariant under the geodesic flow since E(x, p) and l(x, p)
are integrals of motion. In the region {E < 1, ℓ < 4M}, geodesics can spend arbitrarily long periods of time
in the far-away region before crossing H+. This property of the geodesic flow in Schwarzschild is at the heart
of the leading order contribution in the decay estimates stated below.

Let C in ∪ Cout be a (bifurcate) initial null hypersurface, such that C in terminates at H+, and Cout goes
out to I+. We define the subset Σ ⊂ D over the initial hypersurface C in ∪ Cout given by

Σ := π−1(C in ∪ Cout) ∩ D.

For almost every (x, p) ∈ Σ, the geodesic γx,p either crosses the future event horizon H+ or escapes to
infinity towards the future, see Subsection 4.3. We will consider Vlasov fields for which the initial distribution
functions are supported on Σ. Let χD : P → R be the characteristic function of the set D. For completeness,
we write again the main result of the article.

Theorem 3.3. Let f be the solution of (10) on the exterior of Schwarzschild spacetime arising from con-
tinuous compactly supported initial data f0. Let (u, v) be the Eddington–Finkelstein double null pair. For
R > 2M sufficiently large, the components of the energy-momentum tensor Tµν [fχD] of the Vlasov field fχD
satisfy

(16) Tuu ≲
∥f0∥L∞

x,p

u
1
3 r2

, Tuv ≲
∥f0∥L∞

x,p

u
1
3 r2

, Tvv ≲
∥f0∥L∞

x,p

u
1
3 r2

,

for all x ∈ {r ≥ R}, and

(17)
Tuu

Ω4
≲

∥f0∥L∞
x,p

v
1
3

,
Tuv

Ω2
≲

∥f0∥L∞
x,p

v
1
3

, Tvv ≲
∥f0∥L∞

x,p

v
1
3

,

for all x ∈ {r ≤ R}. Similar estimates hold for the other components of the energy-momentum tensor.

Remark 3.4.1. The decay rates for the components of Tµν [fχD] arise from the behaviour of the geodesic flow
in a neighbourhood of the set {E = 1, ℓ < 4M}. In this neighbourhood, geodesics can spend arbitrarily long
periods of time in the far-away region before crossing H+. We find that the components of Tµν [fχD] decay

with a rate dictated by the behaviour of the momentum coordinate pr(t) ∼ t−
1
3 for outgoing particles on

{E = 1}. By the turning points of geodesics in {E < 1, ℓ < 4M}, this behaviour creates the leading order
contribution in the decay estimates for the energy-momentum tensor in the whole spacetime.

Remark 3.4.2. The techniques used to show decay estimates for the Vlasov fields studied in this paper are
not suitable to address massive Vlasov fields on the closure of the complement P \ D of phase space.

3.5. Summary of the proof of Theorem 3.3. Let us summarise the strategy of the proof of Theorem 3.3.
Along the way, we will also explain the key points in the proof of Theorem 3.1 and Theorem 3.2.
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3.5.1. Step 1: Characterisation of the dispersive region D. As a first step, we show the explicit characterisa-
tion (15) of the dispersive region D. By definition of D, we need to identify the geodesics in Schwarzschild
that either cross H+, or escape to infinity towards the future. By the complete integrability of the geodesic
flow, we can identify this class of orbits by studying the radial geodesic flow (r(s), pr(s)) with fixed angular
momentum. Remarkably, the radial geodesic flow (r(s), pr(s)) with fixed angular momentum is determined
by an autonomous ode system that decouples from the rest of the geodesic equations

dr

ds
= pr,

dpr

ds
=
ℓ2

r3

(
1 − 3M

r

)
.

The radial geodesic flow (r(s), pr(s)) can be integrated by using the mass-shell relation in the form

E2 = (pr)2 + Vℓ(r), Vℓ(r) :=
(

1 +
ℓ2

r2

)(
1 − 2M

r

)
.

We show the explicit form (15) of D, by studying the shape of the radial potential Vℓ(r) for any fixed ℓ ≥ 0.

3.5.2. Step 2: Structure of the trapped set in D. The decay estimates for the components Tµν [f ] of the
energy-momentum tensor follow by proving decay in time of the momentum support of f . We will show
the decay of the momentum support of the Vlasov field, by exploiting the concentration of the momentum
support in suitable distributions of phase space associated to the trapped set. For this, we will need a careful
study of the structure of the trapped set and the associated stable manifolds.

Unstable trapping and degenerate trapping at ISCO. These forms of trapping occur on the spheres of
trapped orbits {r = r−(ℓ)}, where r−(ℓ) is defined by (14). Unstable trapping holds for any value of

the angular momentum ℓ in (2
√

3M,∞). For ℓ > 2
√

3M , unstable trapping holds at the energy level
{E = E−(ℓ)}, where

(18) Hℓ(E) :=
2M

1 − E2
− 2M

1 − E2
−(ℓ)

=
r3

r2 − ℓ2

2M r + ℓ2

( (pr)2

1 − E2
+
(

1 +
a(ℓ)

r

)(
1 − r−(ℓ)

r

)2)
is equal to zero. The identity (18) follows by the mass-shell relation. The spheres of trapped orbits {r = r−}
with r− ∈ [4M, 6M), and the associated homoclinic orbits, are at the boundary ∂D. The homoclinic orbits
are tight to the existence of the closure B of the complementary region of phase space, where orbits are
bound. On the contrary, the trapped orbits over the spheres {r = r−} with r− ∈ (3M, 4M), are in intD.

On the other hand, degenerate trapping at ISCO occurs at {r = 6M} when ℓ = 2
√

3M . Degenerate

trapping at ISCO holds at the energy level {E = 2
√
2

3 }, where

(19) H2
√
3M (E) :=

2M

1 − E2
− 18M =

r3

r2 − 6Mr + 12M2

( (pr)2

1 − E2
−

(6M

r
− 1

)3)
is equal to zero. The identity (19) follows by the mass-shell relation. The degenerate trapping arises as the

bifurcation point when ℓ = 2
√

3M : recall that homoclinic orbits exist for ℓ ∈ (2
√

3M, 4M), and there is no

trapping for ℓ < 2
√

3M . The orbits in the sphere {r = 6M} lie at the boundary ∂D.
Parabolic trapping at infinity. To derive decay estimates for the components of Tµν [f ], it is also relevant

to consider the phenomenon of parabolic trapping at infinity. Parabolic trapping at infinity occurs for any
value of the angular momentum ℓ at the energy level {E = 1}, where

(20) E2 − 1 = (pr)2 − 2M

r3

(
r2 − ℓ2

2M
r + ℓ2

)
is equal to zero. The identity (20) follows by the mass-shell relation. The spheres of trapped orbits at infinity
with ℓ ≥ 4M , are at the boundary ∂D. On the contrary, the trapped orbits over the spheres at infinity with
angular momentum ℓ < 4M are in the interior intD.

Role of the stable manifolds. For every form of trapping, we are interested in the corresponding stable
manifolds. We will show that the momentum support of the distribution function concentrates on the tangent
space of these submanifolds of P. Suitable concentration estimates will be the main ingredient to show our
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main result. Key difficulties in the analysis of the geodesic flow in a neighbourhood of the stable manifolds
comes from two bifurcations of the radial dynamics. These bifurcations occur when ℓ = 2

√
3M and ℓ = 4M .

3.5.3. Step 3: Concentration estimates on the stable manifolds. Let us give an overview of the main difficulties
to show the different concentration estimates. We discuss these estimates for the three forms of trapping.

Unstable trapping. The radial dynamics in a neighbourhood of the spheres of trapped orbits {r = r−(ℓ)}
bifurcate when ℓ goes through the value 4M . Let us consider separately the regions {ℓ ≥ 4M} and {ℓ ≤ 4M}.

• The region {ℓ ≥ 4M}. Unstable trapping occurs at the sphere of trapped orbits {r = r−(ℓ)}. We use
suitable defining functions for the stable manifolds to obtain exponential decay in a neighbourhood
of {r = r−(ℓ)}. Later, we propagate these estimates in the bounded region. In the far-away region,
we use the Minkowskian asymptotics of the geodesic flow.

• The region {ℓ ≤ 4M}. Unstable trapping holds at the sphere of trapped orbits {r = r−(ℓ)}.
Here, trapping is not constrained to a fixed sphere, since there are homoclinic orbits contained in
{r ≥ r−(ℓ)}. In this region, we integrate the radial flow using (18). We estimate the flow in a
neighbourhood of the whole homoclinic orbits.

Degenerate trapping at ISCO. The radial dynamics in a neighbourhood of the sphere of trapped orbits
{r = r−(ℓ)} bifurcate when ℓ goes through 2

√
3M . Let us consider separately the regions {ℓ ≥ 2

√
3M} and

{ℓ ≤ 2
√

3M}.

• The region {ℓ ≥ 2
√

3M}. Unstable trapping degenerates when ℓ → 2
√

3M . The radial flow with

ℓ = 2
√

3M has a degenerate form of trapping at {r = 6M}. Furthermore, trapping for ℓ > 2
√

3M
is not constrained to a fixed sphere, since there are homoclinic orbits associated to the spheres of
trapped orbits {r = r−(ℓ)} with ℓ ∈ (2

√
3M, 4M). In this region, we integrate the radial flow using

(18). We obtain estimates for the geodesic flow that do not degenerate as ℓ→ 2
√

3M .

• The region {ℓ ≤ 2
√

3M}. Trapping only occurs when ℓ = 2
√

3M . There is no trapping when

ℓ < 2
√

3M . However, trapping almost occurs as ℓ → 2
√

3M . In this regime, we consider spheres of
almost trapped orbits of the form {r = r−(ℓ)} for ℓ < 2

√
3M . We estimate the flow in a neighbourhood

of the spheres of almost trapped orbits. Crucially, the estimates do not degenerate as ℓ→ 2
√

3M .

Parabolic trapping at infinity. The radial dynamics in a neighbourhood of the parabolic energy level
{E = 1} bifurcate when ℓ goes through 4M . Let us consider separately the regions {ℓ ≥ 4M} and {ℓ ≤ 4M}.

• The region {ℓ ≥ 4M}. Parabolic trapping only occurs in the boundary of the dispersive region D. In
a neighbourhood of the energy level {E = 1} in the far-away region, we only find outgoing geodesics
escaping to infinity. We show that the asymptotics of the orbits in the energy level {E = 1} are slower

than the corresponding Minkowskian asymptotics, in the sense that r(t) ∼ t
2
3 and pr(t) ∼ t−

1
3 .

• The region {ℓ ≤ 4M}. In a neighbourhood of {E = 1}, we find bounded orbits that spend arbitrarily
long periods of time in the far-away region before crossing H+. This effect makes the slow dispersion
towards infinity for E ∼ 1 become relevant even in the bounded region. The concentration estimates
in this region create the leading order contribution in the decay estimates for the components of
Tµν [f ]. In this region, we integrate the radial flow using (20). We obtain estimates for the geodesic
flow that do not degenerate as ℓ→ 4M .

We will show Theorem 3.3 by putting together the concentration estimates in the cases considered above.

4. The timelike geodesic flow

In this section, we begin the study of the timelike geodesic flow in the subset of the mass-shell P over
the exterior of Schwarzschild. The timelike geodesic flow in Schwarzschild spacetime is determined by the
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geodesic equations

du

ds
= pu,

dpu

ds
=

2M

r2
(pu)2 − ℓ2

2r3
,

dv

ds
= pv,

dpv

ds
= −2M

r2
(pv)2 +

ℓ2

2r3
,

dθ

ds
= pθ,

dpθ

ds
= −2prpθ

r
+ sin θ cos θ(pϕ)2,

dϕ

ds
= pϕ,

dpϕ

ds
= −2prpϕ

r
− 2 cot θpθpϕ,

(21)

in terms of the Christoffel symbols Γα
βγ of Schwarzschild in Eddington–Finkelstein double null coordinates.

Here, we have parametrised the geodesic flow by the parameter s.

4.1. Complete integrability of the geodesic flow. A fundamental property of the geodesic flow in
Schwarzschild is its complete integrability. This feature of the geodesic flow holds because of the spherical
symmetry and the stationarity of spacetime.

4.1.1. Hamiltonian structure of the geodesic flow. The geodesic flow in Schwarzschild can be viewed as a
Hamiltonian flow in the cotangent bundle T ∗E with respect to its standard symplectic structure. We recall
the canonical symplectic form ω on T ∗E , given by

ω := dxα ∧ dpα,

in a canonical coordinate system. The two-form ω is known as the Poincaré two-form. In this setup, the
Hamiltonian H : T ∗E → [0,∞) of the geodesic flow is given by

H(x, p) :=
1

2
gαβpαpβ .

We note that H(x, p) is an integral of motion that is independent of the choice of coordinates. The Hamil-
tonian H(x, p) induces a Hamiltonian flow in the cotangent bundle that is known as the cogeodesic flow. By
using the canonical isomorphism between T ∗E and TE , the cogeodesic flow corresponds to the usual geodesic
flow on TE .

4.1.2. The conserved quantities. By the stationarity and the spherical symmetry of Schwarzschild, there
exist three non-trivial quantities that are conserved along the geodesics in spacetime. We recall that the
Hamiltonian H(x, p) is also conserved along the geodesic flow.

Associated to stationarity. We define the particle energy function E : T ∗E → [0,∞) by

E(x, p) := −gM (p, ∂t) = −pt.

Note that E(x, p) is independent under change of coordinates. Moreover, the particle energy function satisfies
E(x, p) > 0 for every (x, p) ∈ P. The particle energy function E(x, p) is conserved along the geodesic flow,
since ∂t is a Killing vector field. In particular, the particle energy E of a geodesic γ is well-defined.

Associated to spherical symmetry. We define the azimuthal angular momentum function ℓϕ : T ∗E → R by

ℓϕ(x, p) := gM (p, ∂ϕ) = pϕ.

The azimuthal angular momentum function ℓϕ(x, p) is conserved along the geodesic flow, since ∂ϕ is a Killing
vector field. Thus, the azimuthal angular momentum ℓϕ of a geodesic γ is well-defined.

Let Q be the symmetric (0, 2) Killing tensor field

Q = ∂θ ⊗ ∂θ + (sin−2 θ)∂ϕ ⊗ ∂ϕ =

3∑
i=1

Ωi ⊗Ωi,
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where Ω1, Ω2, Ω3, are the usual spherically symmetric Killing vector fields (8) of Schwarzschild. We define
the total angular momentum function ℓ : T ∗E → [0,∞) by

ℓ(x, p) := Q(p, p) =

√
p2θ +

1

sin2 θ
p2ϕ.

Note that ℓ(x, p) is independent of the chosen angular coordinate system. By the Killing tensor field Q,
the total angular momentum function ℓ(x, p) is conserved along the geodesic flow. Hence, the total angular
momentum ℓ of a geodesic γ is well-defined. From now on, we refer to ℓ(x, p) simply as the angular momentum.

4.1.3. Integrability of the geodesic flow in Schwarzschild. The geodesic flow in Schwarzschild belongs to a
special class of Hamiltonian systems known as integrable systems. This class is characterised by the property
of possessing enough integrals of motion, so that the Hamiltonian flow can be integrated.

A smooth function F : TE → R is an integral of motion for the geodesic flow, if dF (x, p)X(x, p) = 0
and dF (x, p) ̸= 0 for all (x, p) ∈ TE . By a direct application of the chain rule, an integral of motion F is
constant along every geodesic in Schwarzschild. The functions H(x, p), E(x, p), ℓ(x, p), ℓϕ(x, p), considered
in the previous subsection, are examples of integrals of motion in Schwarzschild. The geodesic flow in a
four-dimensional Lorentzian manifold is called completely integrable, if it possesses four smooth integrals of
motion Fj having the property that {dFj} are linearly independent, and {Fj , Fk} = 0 for all j and k.

Proposition 4.1.1. The geodesic flow in the cotangent bundle of Schwarzschild (T ∗E , ω,H) is a completely
integrable Hamiltonian flow.

Proposition 4.1.1 can be proved by considering the four independent conserved quantities H, E, ℓ, and ℓϕ.
See [RS24] for a detailed proof of this proposition.

4.2. The trapped set. The phenomenon of trapping refers to the existence of geodesics on the black hole
exterior that do not cross H+ ∪ H−, and do not escape to infinity neither towards the past nor the future.
The subset of the mass-shell where these orbits lie is the so-called trapped set. Bounded geodesics that do
not cross H+ ∪H−, are called trapped orbits. Specifically, we define the trapped set Γ ⊂ D as

(22) Γ :=
{

(x, p) ∈ D : γx,p is bounded and does not cross H+ ∪H−
}
.

We also say that a geodesic γx,p is future-trapped if the curve γx,p([0,∞)) is bounded and does not cross H+.
On the other hand, we say that a geodesic γx,p is past-trapped if the curve γx,p((−∞, 0]) is bounded and does
not cross H−. According to the definition (22), the trapped set Γ is a subset of the dispersive region D. In
other words, we do not include the region B in the trapped set. We make this convention to differentiate the
phenomena of trapping and confinement. We note that confinement holds for the geodesic flow in B.

In the following, we will study the class of trapped orbits by considering the geodesic flow in the radial
variable. Remarkably, the geodesic flow in the radial variable decouples from the rest of the geodesic equations.
By the mass-shell relation gx(p, p) = −1, the particle energy function E can be written as

(23) E2 = (pr)2 +
(

1 − 2M

r

)(
1 +

ℓ2

r2

)
, Vℓ(r) :=

(
1 − 2M

r

)(
1 +

ℓ2

r2

)
,

where Vℓ(r) is the potential of the radial flow. Differentiating (23) along the geodesic flow, we find the radial
geodesic flow with angular momentum ℓ determined by

(24)
dr

ds
= pr,

dpr

ds
= −M

r4

(
r2 − ℓ2

M
r + 3ℓ2

)
.

We often refer to the flow (24) simply as the radial geodesic flow, whenever is clear the value of the angular
momentum. We refer to the second equation in (24) as the radial geodesic equation. According to (24),
there exist circular orbits contained in hypersurfaces of fixed radii. The geodesics in these hypersurfaces are
examples of trapped orbits. We refer to these hypersurfaces as the spheres of trapped orbits.
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4.2.1. The spheres of trapped orbits. Let us study the orbits contained in spheres of fixed radii.

Proposition 4.2.1. For all ℓ ≥ 2
√

3M , the unique spheres S±(ℓ) containing geodesics with angular momen-
tum ℓ are given by

S±(ℓ) :=
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r = r±(ℓ) :=
ℓ2

2M

(
1 ±

√
1 − 12M2

ℓ2

)
, pr = 0

}
.

Moreover, the particle energies of the orbits in S±(ℓ) are

(25) E±(ℓ) :=
ℓ√

Mr±(ℓ)

(
1 − 2M

r±(ℓ)

)
.

Proof. The stationary points of the radial flow (24) satisfy pr = 0 and r2 − ℓ2

M r + 3ℓ2 = 0. For ℓ ≥ 2
√

3M ,

the zeroes of this quadratic polynomial are given by r+(ℓ) ≥ r−(ℓ) > 2M . We note that r2 − ℓ2

M r + 3ℓ2 is

strictly positive for ℓ < 2
√

3M . The zeroes of r2 − ℓ2

M r + 3ℓ2 correspond to orbits with angular momentum
ℓ contained in {r = r±(ℓ)}. In particular, we have (25) by using the mass-shell relation (23). The identity
(25) accounts for solving the t-geodesic equation. The geodesic equations for the spherical variables can be
solved independently by considering the geodesic flow on the sphere of radius r = r±(ℓ). □

In the next subsection, we will show that the spheres S−(ℓ) are contained in the trapped set Γ. For this
reason, we call S−(ℓ) the spheres of trapped orbits.

The radii r±(ℓ) correspond to the critical points of the radial potential Vℓ(r). For all ℓ > 2
√

3M , there
exists a local maximum of Vℓ(r) at r−(ℓ), so (r−(ℓ), 0) is a hyperbolic fixed point of the radial flow. The

geodesics in {r = r−(ℓ)} with ℓ > 2
√

3M are called unstable circular orbits. On the other hand, for all

ℓ > 2
√

3M there exists a local minimum of Vℓ(r) at r+(ℓ), so (r+(ℓ), 0) is an elliptic fixed point of the radial

flow. The geodesics in {r = r+(ℓ)} with ℓ > 2
√

3M are called stable circular orbits. Finally, for ℓ = 2
√

3M

there exists an inflection point of Vℓ(r) at r+(2
√

3M) = r−(2
√

3M) = 6M , so (6M, 0) is a degenerated fixed

point of the radial flow. The geodesics in {r = 6M} with ℓ = 2
√

3M are called the innermost stable circular
orbits.

4.3. Decomposition of phase space. In this subsection, we show the main properties of the dispersive
region D of the mass-shell. In particular, we prove the explicit characterisation (15) of the dispersive region
D. We also show a similar characterisation for the complementary region B.

4.3.1. Characterisation of the dispersive region D. Let us decompose the subset P of the mass-shell over the
exterior of Schwarzschild spacetime as

P = D ∪ B,
in terms of the subsets

D := clos
{

(x, p) ∈ P : γx,p crosses H+ ∪H− or r(γx,p(s)) → +∞ as s→ ∞
}
,

B := clos
{

(x, p) ∈ P : γx,p is bounded and does not cross H+ nor H−
}
,

where π : P → E is the canonical projection, and γx,p is the unique geodesic with initial data (x, p) on the
black hole exterior. The decomposition P = D ∪ B holds by the definition of the sets D and B.

In the following, we identify explicitly the sets D and B, in terms of the particle energy function E(x, p),
and the total angular momentum function ℓ(x, p). For this purpose, we will study the specific form of the
radial potential Vℓ(r) for all ℓ ≥ 0.

Proposition 4.3.1. The sets D and B are invariant under the geodesic flow. Moreover, the sets D and B
are characterised as

D =
{

(x, p) ∈ P : ℓ(x, p) ≥ 4M such that if E(x, p) < 1 then r < r−(ℓ)
}

(26)

∪
{

(x, p) ∈ P : ℓ(x, p) < 4M such that if E(x, p) ≤ E−(ℓ) then r ≤ r−(ℓ)
}
,
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and

B =
{

(x, p) ∈ P : ℓ(x, p) ≥ 4M such that if E(x, p) < 1 then r > r−(ℓ)
}
∪ℓ∈(4M,∞) S−(ℓ)(27)

∪
{

(x, p) ∈ P : ℓ(x, p) < 4M such that if E(x, p) ≤ E−(ℓ) then r ≥ r−(ℓ)
}
.

Finally, the intersection D ∩ B is given by

D ∩ B =
{

(x, p) ∈ P : ℓ(x, p) ∈ [2
√

3M, 4M ], E(x, p) = E−(ℓ), r ≥ r−(ℓ)
}

(28)

∪ℓ∈(4M,∞) S−(ℓ) ∪
{

(x, p) ∈ P : ℓ(x, p) ∈ [4M,∞), E(x, p) = 1, r ≥ r−(ℓ)
}
.

Proof. In the following, we will consider three different regions of the mass-shell. We consider the sets of
points (x, p) ∈ P for which the geodesics γx,p have angular momentum ℓ in [0, 2

√
3M), in (2

√
3M, 4M ], or

in [4M,∞). In each of these cases, we first show that if (x, p) belongs to the RHS of (26)–(27), then (x, p)
belongs to D or B, respectively. We recall that by definition of the radial potential Vℓ(r), we have

(29)
d

dr
Vℓ(r) =

2M

r4

(
r2 − ℓ2

M
r + 3ℓ2

)
.

Moreover, we note that Vℓ(2M) = 0, and limr→∞ Vℓ(r) = 1.

Case 1: ℓ(x, p) ≤ 2
√

3M . In this case the potential Vℓ(r) is nondecreasing. In particular, there are no
critical points. We proceed to study two subcases: orbits γx,p with particle energy E < 1 or E ≥ 1.

• Subcase 1a: E(x, p) < 1. A geodesic γx,p with E < 1 and ℓ < 2
√

3M crosses H+. Thus, if E(x, p) ≤ 1

and ℓ(x, p) ≤ 2
√

3M , we have (x, p) ∈ D.

• Subcase 1b: E(x, p) ≥ 1. On the other hand, geodesics with E ≥ 1 and ℓ ≤ 2
√

3M , either cross
the future event horizon H+, or escape to infinity towards the future. So, if E(x, p) ≥ 1 and

ℓ(x, p) ≤ 2
√

3M , we also have (x, p) ∈ D.

We note that (x, p) ∈ D ∩ B for trapped orbits γx,p at r = 6M with ℓ(x, p) = 2
√

3M . Indeed, trapped orbits
at r = 6M can be obtained as limit points of circular orbits on other spheres of trapped orbits.

Case 2: ℓ(x, p) ∈ (2
√

3M, 4M ]. In this case, the radial potential Vℓ(r) has critical points at r±(ℓ) with
E−(ℓ) = Vℓ(r−(l)) ≤ 1. We proceed to study two subcases: orbits γx,p with E < E−(ℓ) or E ≥ E−(ℓ).

• Subcase 2a: E(x, p) < E−(ℓ). The geodesics γx,p with E(x, p) ≤ E−(ℓ) in {r ≥ r−(ℓ)} are bounded,
so (x, p) ∈ B. In contrast, a geodesic γx,p with E(x, p) < E−(ℓ) contained in {r < r−(ℓ)} crosses H+.
So, (x, p) ∈ D if E(x, p) ≤ E−(ℓ) in {r ≤ r−(ℓ)}.

• Subcase 2b: E(x, p) ≥ E−(ℓ). The geodesics γx,p with particle energy E(x, p) ∈ (E−(ℓ), 1) cross H+.
Thus, if E(x, p) ∈ [E−(ℓ), 1], then (x, p) ∈ D. On the other hand, geodesics γx,p with E(x, p) ≥ 1 and

ℓ ∈ (2
√

3M, 4M), either cross the future event horizon H+, or escape to infinity towards the future.
So, in this last case (x, p) ∈ D.

We note that for orbits γx,p with particle energy E(x, p) = E−(ℓ) contained in {r ≥ r−(ℓ)}, we have
(x, p) ∈ D ∩ B, since (x, p) can be obtained as limit points of (x, p) with E < E−(ℓ), and limit points of
(x, p) with E > E−(ℓ).

Case 3: ℓ(x, p) ∈ [4M,∞). In this case, the radial potential Vℓ(r) has also critical points at r±(ℓ), but
E−(ℓ) = Vℓ(r−(l)) ≥ 1 instead. We proceed to study two subcases: orbits γx,p with E < 1 or E ≥ 1.

• Subcase 3a: E(x, p) < 1. Geodesics γx,p with E(x, p) < 1 contained in {r > r−(ℓ)} are bounded. So
(x, p) ∈ B when E(x, p) ≤ 1 in r > r−(ℓ). In contrast, the orbits γx,p with E(x, p) < 1 contained in
{r < r−(ℓ)} cross H+. So, (x, p) ∈ D when E(x, p) ≤ 1 in {r ≤ r−(ℓ)}.

• Subcase 3b: E(x, p) ≥ 1. On the other hand, geodesics γx,p with E(x, p) ∈ (1, E−(ℓ)) ∪ (E−(ℓ),∞)
and ℓ ∈ (4M,∞), either cross the future event horizon H+, or escape to infinity towards the future.
So (x, p) ∈ D when E(x, p) ∈ [1,∞) and ℓ ∈ [4M,∞). Moreover, the geodesics in the union
∪ℓ∈(4M,∞)S−(ℓ) of trapped spheres is also contained in B by definition.
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We note that for orbits γx,p with particle energy E(x, p) = 1 contained in {r ≥ r−(ℓ)}, we have (x, p) ∈ D ∩ B,
since (x, p) can be obtained as limit points of (x, p) with E < 1, and limit points of (x, p) with E > 1. We
also note that the union ∪ℓ∈(4M,∞)S−(ℓ) of trapped spheres is also contained in the intersection D ∩ B.

Putting together the previous three cases, we obtain that if (x, p) belongs to the RHS of (26)–(27), then
(x, p) belongs to either D or B, respectively. A posteriori, it is straightforward to show the opposite, namely,
that if (x, p) belongs to either D or B, then (x, p) belongs to the RHS of (26) or (27), respectively. The
invariance of the sets D and B is a direct consequence of the characterisations (26)–(27). The identity (28)
also follows from the previous analysis. □

Remark 4.3.1. In the characterisation of B, the union ∪ℓ∈(4M,∞)S−(ℓ) does not play any role for the purpose

of studying massive Vlasov fields on B. We note that the closure of this set is given by ∪ℓ∈[4M,∞)S−(ℓ),
which has measure zero on the mass-shell.

See [Cha83, Section 19] for more information on the qualitative description of the timelike geodesic flow
in Schwarzschild.

4.3.2. Dispersive properties of the domain D. In this subsection, we show some fundamental properties of
the dispersive region D. We first show that D is the largest invariant open subset of P, where we can expect
to prove decay estimates for the massive Vlasov equation on Schwarzschild.

Proposition 4.3.2. The set D̊ is the largest invariant open subset of P, where for almost every (x, p) the
geodesic γx,p either crosses H+, or escapes to infinity towards the future.

Proof. By contradiction, we suppose that there exists a non-trivial invariant open subset D′ containing D.
By Proposition 4.3.1, the mass-shell is decomposed as D̊ ⊔ (D ∩ B) ⊔ B̊. Let (x, p) ∈ D′ \ D.

If (x, p) ∈ B̊, then there is a neighbourhood A ⊂ D′ ∩ B̊ of (x, p), since D′ is open. We can assume that A

is invariant, since D′ and B̊ are also invariant. We have obtained then an open set A such that A ⊂ B̊ ⊂ D′.
In particular, the orbits in A are bounded and do not cross H+. Finally, we obtain the desired contradiction
since A is open.

On the other hand, if (x, p) ∈ D ∩ B, then there is a neighbourhood A ⊂ D′ of (x, p), since D′ is

open. Furthermore, there exists (x′, p′) ∈ A ∩ B̊ since D ∩ B has codimension one. Then, there exists a

neighbourhood B ⊂ D′ ∩ B̊ of (x′, p′). We can assume that B is invariant by the invariance of D′ ∩ B̊. The

rest of the proof follows as in the case where (x, p) ∈ B̊, but using (x′, p′) instead. □

We show now that massive Vlasov fields do not decay in general when supported on any invariant open
set D′ larger than D.
Proposition 4.3.3. For every non-trivial invariant open set D′ ⊂ P containing the domain D̊, there exists
non-trivial compactly supported stationary solutions f of the massive Vlasov equation such that supp(f) ⊂ D′.

Proof. By the proof of Proposition 4.3.2, there exists an invariant open subset A ⊂ D′ ∩ B̊. One can then
easily show that there exists a stationary Vlasov field of the form f(x, p) = Φ(E(x, p), ℓ(x, p))χ(x, p) with
supp(f) ⊂ D′. Here, Φ is a regular non-negative function, and χ a suitably chosen cut-off function. □

By straightforward arguments Proposition 4.3.2 and Proposition 4.3.3 can be suitably modified to make
similar statements for the set Σ̊ ⊂ π−1(C in ∪ Cout) over the initial bifurcate hypersurface, and the class of
initial data for the massive Vlasov equation on π−1(C in ∪ Cout). We will not pursue this here.

4.3.3. Characterisation of the trapped set Γ. Let us characterise the trapped set Γ ⊂ D of Schwarzschild, in
terms of the particle energy E(x, p), and the total angular momentum ℓ(x, p).

Proposition 4.3.4. The trapped set Γ is characterised as

Γ =
{

(x, p) ∈ D : ℓ(x, p) ∈ [2
√

3M, 4M), E(x, p) = E−(ℓ), r ≥ r−(ℓ)
}

(30)

∪
{

(x, p) ∈ D : ℓ(x, p) ∈ [4M,∞), E(x, p) = E−(ℓ), r = r−(ℓ)
}
.
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Moreover, the trapped set Γ has measure zero on the mass-shell.

Proof. By the proof of Proposition 4.3.1, there exists a non-trivial trapped set for every ℓ ≥ 2
√

3M . For
ℓ ∈ [2

√
3M, 4M), the trapped set is composed by the points (x, p) in the homoclinic orbits associated to the

sphere S−(ℓ). In other words, we consider the points (x, p) with E(x, p) = E−(ℓ) in {r ≥ r−(ℓ)}. This set
includes the corresponding spheres of trapped orbits S−(ℓ). For ℓ ∈ [4M,∞), the trapped set is composed

only by the points (x, p) in the spheres S−(ℓ). Finally, we observe that the subsets of Γ with ℓ ∈ [2
√

3M, 4M)
and ℓ ∈ [4M,∞), have both codimension one. In particular, Γ has measure zero on the mass-shell. □

Let us define the subset Σft ⊂ Σ given by

Σft :=
{

(x, p) ∈ Σ : γx,p is future-trapped
}
.

Let us show now that Σft has measure zero with respect to the induced volume form on Σ.

Proposition 4.3.5. The set Σft has measure zero on π−1(C in ∪ Cout). In particular, for almost every
(x, p) ∈ Σ, the future of (x, p) along γx,p either crosses H+ or is unbounded.

Proof. Let Σpt be the set of points (x, p) in Σ such that γx,p is past-trapped. Note that the union Σpt ∪ Σft

is given by

Σpt ∪ Σft = π−1(C in ∪ Cout) ∩
{

(x, p) ∈ P : ℓ(x, p) ∈ [2
√

3M,∞), E(x, p) = E−(ℓ)
}
,

where E−(ℓ) defines the energy level of the orbits in the sphere S−(ℓ). Finally, we observe that Σpt ∪Σft has
codimension one, so it has measure zero. In particular, the set Σpt has also measure zero. □

In a similar fashion, one can easily show that for almost every (x, p) ∈ Σ1 (or in Σ0), the future of (x, p)
along γx,p either crosses H+ or escapes to infinity.

4.4. Dispersive properties in the near-horizon and the far-away regions. In this subsection, we study
dispersive properties of the geodesic flow in the near-horizon and the far-away regions. These properties are
obtained by studying the geodesic equations for the null coordinates. By the mass-shell relation, the null
momentum coordinates satisfy

(31)
4r2Ω2

ℓ2 + r2
pupv = 1.

Motivated by this identity, we will show suitable expansion and contraction properties of the geodesic flow
towards the submanifolds of the mass-shell {Ω2pu = 0} and {pv = 0}. We note that the submanifolds
{Ω2pu = 0} and {pv = 0} intersect at the tip of the light cones Px for every point in spacetime.

4.4.1. In the far-away region. Let us consider the normalised momentum coordinates r2pu

ℓ2+r2 and Ω2pv. The

product of these normalised coordinates is constant by (31). In the following, it will be convenient to
parametrise timelike geodesics by the retarded time coordinate u. We define the derivative along the geodesic
flow with respect to u as d

du := 1
pu

d
ds .

Proposition 4.4.1. Along any timelike geodesic on the exterior of Schwarzschild with angular momentum
ℓ, we have

d

du

( r2pu

ℓ2 + r2

)
= − 2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)( r2pu

ℓ2 + r2

)
,(32)

d

du
(Ω2pv) =

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
(Ω2pv).(33)
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By integrating the geodesic equations (32)–(33) for the normalised momentum coordinates, we obtain the
following constants of motion along the geodesic flow:

r2pu

ℓ2 + r2
(0) =

r2pu

ℓ2 + r2
(s) exp

(∫ u(s)

u(0)

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
du′

)
,

Ω2pv(0) = Ω2pv(s) exp
(
−
∫ u(s)

u(0)

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
du′

)
.

We remark that the term 2M
(r2+ℓ2)r2 (r2 − ℓ2

M r + 3ℓ2) is positive when r is sufficiently large. As a result, we

obtain expansion and contraction for the geodesic flow towards the submanifolds of the mass-shell {Ω2pu = 0}
and {pv = 0}, respectively.

Remark 4.4.1. The normalised momentum coordinate r2pu

ℓ2+r2 satisfies the relation r2pu

ℓ2+r2 = g(− r2

2Ω2(ℓ2+r2)∂v, p).

The vector field − r2

2Ω2(ℓ2+r2)∂v is a modification of the vector field r2∂v that is used in the well-known

rp-weighted energy method introduced by Dafermos–Rodnianski for the study of wave equations on black
hole spacetimes [DR10]. On the other hand, the normalised coordinate Ω2pv satisfies the relation Ω2pv =
g(− 1

2∂u, p).

4.4.2. In the near-horizon region. Let us consider the normalised momentum coordinates Ω2pu and r2pv

ℓ2+r2 .

The product of these normalised coordinates is constant by (31). In the following, it will be convenient
to parametrise timelike geodesics by the advanced time coordinate v. We define the derivative along the
geodesic flow with respect to v as d

dv := 1
pv

d
ds .

Proposition 4.4.2. Along any timelike geodesic on the exterior of Schwarzschild with angular momentum
ℓ, we have

d

dv
(Ω2pu) =

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
(Ω2pu),(34)

d

dv

( r2pv

ℓ2 + r2

)
= − 2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)( r2pv

ℓ2 + r2

)
.(35)

By integrating the geodesic equations (34)–(35) for the normalised momentum coordinates, we obtain the
following constants of motion along the geodesic flow:

r2pv

ℓ2 + r2
(0) =

r2pv

ℓ2 + r2
(s) exp

(∫ v(s)

v(0)

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
dv′

)
,

Ω2pu(0) = Ω2pu(s) exp
(
−
∫ v(s)

v(0)

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
dv′

)
.

We remark that the term 2M
(r2+ℓ2)r2 (r2 − ℓ2

M r + 3ℓ2)|r=2M is equal to 1
2M for every ℓ ≥ 0. The value 1

2M

corresponds to the surface gravity of H+. More generally, the term 2M
(r2+ℓ2)r2 (r2− ℓ2

M r+ 3ℓ2) is positive when

r ∼ 2M . As a result, we obtain expansion and contraction for the geodesic flow towards the submanifolds of
the mass-shell {pv = 0} and {Ω2pu = 0}, respectively.

Remark 4.4.2. We note that the normalised momentum coordinate r2pv

ℓ2+r2 satisfies the relation r2pv

ℓ2+r2 =

g(− r2

2Ω2(ℓ2+r2)∂u, p). The vector field − r2

2Ω2(ℓ2+r2)∂u is a modification of the vector field Ω−2∂v that is used

to exploit the well-known red-shift effect in the study of wave equations on black hole spacetimes. See the
lecture notes [DR13, Chapter 3] for more information. On the other hand, the normalised coordinate Ω2pu

satisfies the relation Ω2pu = g(− 1
2∂v, p).
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4.5. Estimates for the momentum coordinates along timelike geodesics. In this subsection, we
prove some elementary a priori estimates for the momentum coordinates along geodesics in the exterior of
Schwarzschild. We first address the case of geodesics that are not contained in the near-horizon region.

In the rest of the paper, the following terminology will be useful. We say that a geodesic γ is outgoing
or ingoing at a point x ∈ E , if pr > 0 or pr < 0, respectively. We also say that a geodesic γ is outgoing or
ingoing in a region R, if γ is outgoing or ingoing for every x ∈ R, respectively. We sometimes say that a
geodesic is simply outgoing or ingoing whenever the meaning is clear from the context.

Lemma 4.5.1. Let r0 > 2M , L1 > 0, and E1 > 0. For every geodesic γ in {r > r0} with angular momentum
ℓ ≤ L1 and particle energy E ≤ E1, the momentum coordinates along γ satisfy

|pu(s)| ≲ 1, |pv(s)| ≲ 1, |pθ(s)| ≲ 1

r2(s)
, | sin θpϕ(s)| ≲ 1

r2(s)
.

Proof. By the definition of E, the null momentum coordinates are bounded by

|pu(s) + pv(s)| =
E

Ω2(r(s))
≤ E1

Ω2(r0)
.

We have used here the conservation of E along the geodesic flow. On the other hand, the spherical momentum
coordinates satisfy √

(pθ)2 + sin2 θ(pϕ)2 =
ℓ

r2(s)
≤ L1

r2(s)
.

We have used here the conservation of ℓ along the geodesic flow. □

We obtain next explicit formulae for the null momentum coordinates in terms of the radial coordinate,
and the conserved quantities of the corresponding timelike geodesic. This formulae follow from the mass-shell
relation.

Lemma 4.5.2. Let γ be a geodesic with angular momentum ℓ and particle energy E. Then, the null mo-
mentum coordinates pu, pv along γ are equal to

(36)
E

2Ω2

(
1 ± 1

E

√
(E2 − 1)r3 + 2Mr2 − ℓ2r + 2Mℓ2

r3

)
,

where the sign is chosen depending on whether the geodesic is ingoing or outgoing at γ(s).

Proof. By the mass-shell relation and the definition of E, we have

E

Ω2
=

1

4Ω2pv

(
1 +

ℓ2

r2

)
+ pv.

We rewrite this identity as the quadratic equation

(pv)2 − E

Ω2
pv +

1

4Ω2

(
1 +

ℓ2

r2

)
= 0.

We note that the same quadratic equation is satisfied by pu. Thus, the null momentum coordinates are equal
to

E

2Ω2

(
1 ±

√
1 − Vℓ(r)

E2

)
,

where the sign is chosen depending on whether the geodesic is ingoing or outgoing at x ∈ E . □
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4.5.1. The momentum coordinates in the far-away region. We will now perform estimates for the momentum
coordinates along outgoing geodesics in the far-away region of spacetime.

Proposition 4.5.3. Let E1 > E0 > 1 and L1 > 0. There exists R > 2M such that every geodesic γ in
{r > R} with angular momentum ℓ ≤ L1 and particle energy E ∈ [1, E1] is either outgoing or ingoing.
Moreover, for every outgoing geodesic γ in {r > R} with angular momentum ℓ ≤ L1 and particle energy
E ∈ [1, E1], the null momentum coordinates along γ satisfy

(37)
∣∣∣pu(s) − E −

√
E2 − 1

2

∣∣∣ ≲ 1

r
1
2 (s)

,
∣∣∣pv(s) − E +

√
E2 − 1

2

∣∣∣ ≲ 1

r
1
2 (s)

,

Finally, for every outgoing geodesic γ in {r > R} with angular momentum ℓ ≤ L1 and particle energy
E ∈ [E0, E1], the null momentum coordinates along γ satisfy∣∣∣pu(s) − E −

√
E2 − 1

2

∣∣∣ ≲ 1

r(s)
,

∣∣∣pv(s) − E +
√
E2 − 1

2

∣∣∣ ≲ 1

r(s)
.

Proof. By the mass-shell relation, the radial momentum coordinate pr along a geodesic γ is bounded below
by

(38) (pr)2 = E2 − Vℓ(r) =
r3(E2 − 1) + 2Mr2 − ℓ2r + 2Mℓ2

r3
≥ 2Mr2 − ℓ2r + 2Mℓ2

r3
≳

1

r
,

by choosing R > 2M sufficiently large. We are using here that γ is contained in {r ≥ R}. In particular,
every geodesic γ in {r ≥ R} is either ingoing or outgoing.

We now restrict our attention to outgoing geodesics. In this case, the null momentum coordinates of a
geodesic γ can be written as

pu =
E

2Ω2

(
1 −

√
1 − Vℓ(r)

E2

)
, pv =

E

2Ω2

(
1 +

√
1 − Vℓ(r)

E2

)
,

by Lemma 4.5.2. We write the difference between the momentum coordinate pv and its limit value at infinity
as

(39) pv(s) − E +
√
E2 − 1

2
=
EM

Ω2r
+

1

2

(√E2

Ω4
− Vℓ(r)

Ω4
−
√
E2 − 1

)
.

We first address the case when E ≥ 1. We bound the second term in (39) by∣∣∣√E2

Ω4
− Vℓ(r)

Ω4
−
√
E2 − 1

∣∣∣ ≤ ∣∣∣E2

Ω4
(1 − Ω4) +

1

Ω4
(Ω4 − Vℓ(r))

∣∣∣ 1
2

=
1

r
1
2 Ω2

∣∣∣2Mℓ2

r2
− ℓ2 + 4M2E2

r
+ 2M(2E2 − 1)

∣∣∣ 1
2

≲
1

r
1
2

,

where we used the 1
2 -Hölder continuity of the square root in the first estimate. The estimate for pv then

follows, since the first term in (39) decays faster. A similar argument proves the corresponding estimate for
pu.

On the other hand, if E ≥ E0 > 1, then the second term in (39) can be bounded by∣∣∣√E2

Ω4
− Vℓ(r)

Ω4
−
√
E2 − 1

∣∣∣ ≲ ∣∣∣E2

Ω4
(1 − Ω4) +

1

Ω4
(Ω4 − Vℓ(r))

∣∣∣
=

1

rΩ4

∣∣∣2Mℓ2

r2
− ℓ2 + 4M2E2

r
+ 2M(2E2 − 1)

∣∣∣ ≲ 1

r
,

where we used in the first estimate that the square root is Lipschitz strictly away of the origin. The estimate
for pv then follows, since the first term in (39) decays with the same rate. A similar argument proves the
corresponding estimate for pu. □
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Remark 4.5.1. The decay rate r−
1
2 in the bounds (37) for the momentum coordinates is optimal. For geodesics

with E = 1, we have

pv − 1

2
=

M

Ω2r
+

1

Ω2

√
1 − Vℓ(r) =

M

Ω2r
+

√
2M

Ω2r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

.

A similar identity holds for the difference pu − 1
2 when E = 1. This energy value (equal to one) corresponds

to the rest mass of the particles in the system.

4.5.2. The momentum coordinates in the near-horizon region. We estimate the null momentum coordinates
along ingoing geodesics in a neighbourhood of H+. In the following, we will estimate Dpu instead of pu,
because Ω−2∂u extends regularly to a non-vanishing vector field on H+.

Lemma 4.5.4. Let E0 > 0 and L > 0. There exists r0 > 2M such that every geodesic γ in {r < r0} with
angular momentum ℓ ≤ L and particle energy E ∈ [E0,∞), is either outgoing or ingoing. Moreover, for
every ingoing geodesic γ in {r < r0} with angular momentum ℓ ≤ L and particle energy E ∈ [E0,∞), the
null momentum coordinates along γ satisfy

|E − Ω2pu(s)| ≲ Ω(s),
∣∣∣pv(s) − 1

4E

( ℓ2

4M2
+ 1

)∣∣∣ ≲ Ω(s).

Proof. By the mass-shell relation, the radial momentum coordinate pr along a geodesic γ satisfies

(pr)2 = E2 − Vℓ(r) ≥ E2
0 − Vℓ(r) >

1

2
E2

0 ,

by choosing r0− 2M sufficiently small. Thus, every such geodesic γ in {r < r0} is either outgoing or ingoing.
We now restrict our attention to incoming geodesics. In this case, we note that pr(s) = Ω2pv(s)−Ω2pu(s) <

0. Thus, we can bound the term Ω2pv by

(40) Ω2pv ≤ (Ω2pu)
1
2 (Ω2pv)

1
2 =

1

2
Ω
( ℓ2
r2

+ 1
) 1

2

≲ Ω

where we have used the mass-shell relation. As a result, we obtain the desired estimate for Ω2pu by

(41) |E − Ω2pu(s)| = Ω2pv(s) ≤ CΩ(s),

where C > 0 is a uniform constant. In particular, we obtain a uniform lower bound for Ω2pu, since

Ω2pu ≥ E − CΩ(r) ≥ E0 − CΩ(r) ≥ 1

2
E0,

by choosing r0 − 2M sufficiently small. Finally, we obtain∣∣∣pv − 1

4E

( ℓ2

4M2
+ 1

)∣∣∣ =
∣∣∣ℓ2

4

( 1

Ω2pur2
− 1

4M2E

)
+

1

4

( 1

Ω2pu
− 1

E

)∣∣∣
=

∣∣∣ ℓ2

4Ω2pu

( 1

r2
− 1

4M2

)
+

ℓ2

16M2

( 1

Ω2pu
− 1

E

)
+
E − Ω2pu

4EΩ2pu

∣∣∣
=

∣∣∣ℓ2(2M − r)(2M + r)

16M2Ω2r2pu
+
ℓ2(E − Ω2pu)

16M2EΩ2pu
+
E − Ω2pu

4EΩ2pu

∣∣∣ ≲ Ω,

where we used in the last inequality the estimate (41), and the lower bounds for Ω2pu and E. □

5. The trapped set and the stable manifolds

In this section, we study the geodesic flow in a neighbourhood of the trapped set Γ in the dispersive region
D of phase space. In this analysis, an important role is played by the stable manifolds associated to the
spheres of trapped orbits S−(ℓ) for ℓ ≥ 2

√
3M . We will show suitable contraction and expansion properties

for the geodesic flow, by using suitable defining functions of the stable manifolds. We will also estimate the
corresponding rates of contraction and expansion. We finish this section by studying similar properties for
the parabolic trapping at infinity.
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5.1. Unstable trapping. Let ℓ > 2
√

3M . By Proposition 4.2.1, S−(ℓ) is the unique sphere containing
geodesics with angular momentum ℓ. One can easily show the normal hyperbolicity of the sphere of trapped
orbits S−(ℓ) by using variants of the arguments in [WZ11], because of the hyperbolicity of the fixed point
(r−(ℓ), 0) of the radial flow.2 The normal hyperbolicity of the sphere S−(ℓ) implies the existence of suitable
stable and unstable manifolds W±(ℓ) in phase space P. This property follows by the powerful stable manifold
theorem for normally hyperbolic sets [HPS77]. We remark that the orbits in the stable and the unstable
manifolds, are future-trapped and past-trapped, respectively.

For the geodesic flow in Schwarzschild, we can write the submanifolds W±(ℓ) explicitly, since they cor-
respond to the energy level {E = E−(ℓ)} of the radial flow. For this purpose, we parametrise the radial

momentum coordinate pr of future-trapped and past-trapped orbits with ℓ > 2
√

3M and E = E−(ℓ), by

(42) pr,−ℓ (r) := sgn(r−(ℓ) − r)
√
E2

−(ℓ) − Vℓ(r) and pr,+ℓ (r) := sgn(r − r−(ℓ))
√
E2

−(ℓ) − Vℓ(r),

respectively. We summarise this discussion with the following propositions.

Proposition 5.1.1. Let ℓ > 4M . The stable manifolds of the sphere of trapped orbits S−(ℓ) are analytic
codimension two submanifolds of P, given by

W+(ℓ) =
{

(x, p) ∈ P : ℓ(x, p) = ℓ, pr = pr,+ℓ

}
,

W−(ℓ) =
{

(x, p) ∈ P : ℓ(x, p) = ℓ, pr = pr,−ℓ

}
.

In particular, the intersection W+(ℓ) ∩ W−(ℓ) is equal to the sphere S−(ℓ).

We note that the stable manifolds W±(ℓ) are contained in the unbounded region {r > 2M}. By the
mass-shell relation, we have the constraint that E2

−(ℓ) − Vℓ(r) ≥ 0 which is satisfied for any r > 2M .

Proposition 5.1.2. Let ℓ ∈ (2
√

3M, 4M). The stable manifolds of the sphere of trapped orbits S−(ℓ) are
analytic codimension two submanifolds of P, given by

W+(ℓ) =
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r ≤ r−(ℓ), pr = pr,+ℓ

}
∪
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r ≥ r−(ℓ), pr = pr,±ℓ

}
,

W−(ℓ) =
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r ≤ r−(ℓ), pr = pr,−ℓ

}
∪
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r ≥ r−(ℓ), pr = pr,±ℓ

}
.

In particular, the intersection W+(ℓ) ∩ W−(ℓ) is equal to the set

Whom(ℓ) :=
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r ≥ r−(ℓ), pr = pr,±ℓ

}
.

If ℓ ∈ (2
√

3M, 4M), the stable manifolds W±(ℓ) are only contained in the domain {2M < r ≤ a(ℓ)}, where
a(ℓ) is the unique root of E2

−(ℓ) − Vℓ(r) on (r−(ℓ),∞). Recall that by the mass-shell relation, we have the
constraint that E2

−(ℓ) − Vℓ(r) ≥ 0.

Remark 5.1.1. (a) For ℓ ∈ (2
√

3M, 4M), the orbits in the stable manifolds with r > r−(ℓ), are of
homoclinic type. In other words, these orbits satisfy lims→±∞(r(s), pr(s)) = (r−(ℓ), 0). For this
reason, the intersection of the stable manifolds is given by Whom(ℓ). We note that Whom(ℓ) is
contained in the trapped set Γ.

2Specifically, the sphere S−(ℓ) of trapped orbits is eventually absolutely r-normally hyperbolic for every r according to
[HPS77, Chapter 1, Definition 4].
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(b) We clarify here an abuse of terminology used in Proposition 5.1.2. For ℓ ∈ (2
√

3M, 4M), the stable
manifolds W±(ℓ) are not submanifolds of P due to global considerations. The stable manifolds
W±(ℓ) self-intersect at the sphere S−(ℓ). This property holds because the set Whom(ℓ), where we find
homoclinic orbits with angular momentum ℓ, is contained in the stable and the unstable manifolds.
Despite this global misbehaviour, the sets W±(ℓ) are indeed codimension two submanifolds of P in
a neighbourhood of the sphere S−(ℓ).

5.1.1. Lyapunov exponents of the fixed points (r−(ℓ), 0). Let ℓ > 2
√

3M . Let us study the infinitesimal rates
of contraction and expansion of the radial flow on the spheres of trapped orbits S−(ℓ).

It will be convenient to parametrise timelike geodesics by the time coordinate t. We define the derivative
along the geodesic flow with respect to t as d

dt := 1
pt

d
ds . In these terms, we write the radial geodesic equation

as

d2r

dt2
=

1

(pt)3

(dpr

ds
pt − dpt

ds
pr
)

= −MΩ4

E2r4

(
r2 − ℓ2

M
r + 3ℓ2

)
+

2M

r2Ω2

(pr
pt

)2

= − M

r4Vℓ

(
Ω4 −

(pr
pt

)2)(
r2 − ℓ2

M
r + 3ℓ2

)
+

2M

r2Ω2

(pr
pt

)2

= −MΩ4

r4Vℓ

(
r2 − ℓ2

M
r + 3ℓ2

)
+

3M

r4Vℓ

(
r2 − ℓ2

3M
r +

5ℓ2

3

)(pr
pt

)2

.(43)

The radial geodesic equation (43) defines the radial flow in the (r, drdt ) coordinates by

(44)
dr

dt
=
pr

pt
,

d

dt

(pr
pt

)
= −MΩ4

r4Vℓ

(
r2 − ℓ2

M
r + 3ℓ2

)
+

3M

r4Vℓ

(
r2 − ℓ2

3M
r +

5ℓ2

3

)(pr
pt

)2

.

The sphere S−(ℓ) of trapped orbits corresponds to the fixed point (r = r−(ℓ), pr = 0) for ℓ ≥ 2
√

3M . The
linearisation of the radial flow (44) around the fixed point (r−(ℓ), 0) is given by

(45)
d

dt
(r − r−(ℓ)) =

pr

pt
,

d

dt

(pr
pt

)
= Φℓ(r−(ℓ))(r − r−(ℓ)),

where the function Φℓ : [2M,∞) → R is defined by

Φℓ(r) :=
d

dr

(
− MΩ4

r4Vℓ

(
r2 − ℓ2

M
r + 3ℓ2

))
.

An elementary computation shows that

(46) λ(ℓ) := Φℓ(r−(ℓ)) =
MΩ2(r−(ℓ))

r2−(ℓ)(r2−(ℓ) + ℓ2)
(r+(ℓ) − r−(ℓ)),

by using that r±(ℓ) satisfies r2± − ℓ2

M r± + 3ℓ2 = 0. As a result, we have Φℓ(r−(ℓ)) > 0 when ℓ > 2
√

3M , and

Φ2
√
3M (6M) = 0 when ℓ = 2

√
3M . In particular, the fixed point (r−(ℓ), 0) of the radial flow is hyperbolic

when ℓ > 2
√

3M , and the hyperbolicity degenerates at ℓ = 2
√

3M .

Definition 5.1.3. Let λ : (2
√

3M,∞) → [0,∞) be defined by

λ(ℓ) := Φℓ(r−(ℓ)).

The positive and negative Lyapunov exponents of the fixed point (r−(ℓ), 0), are λ
1
2 (ℓ) and −λ 1

2 (ℓ), respec-

tively. From now on, we refer to λ
1
2 (ℓ) simply as the Lyapunov exponent of (r−(ℓ), 0).

The Lyapunov exponent λ
1
2 (ℓ) determines the infinitesimal rate of expansion and contraction of the radial

flow on the unstable and stable manifolds, respectively. In other words, the Lyapunov exponent λ
1
2 (ℓ)

determines the rate of expansion and contraction of the differential of the radial flow on the stable and
unstable subspaces (which are tangent to the stable and unstable manifolds), respectively.

We will now show that the Lyapunov exponent λ
1
2 (ℓ) is strictly increasing in ℓ. We begin proving that

r−(ℓ) is a monotone function.
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Lemma 5.1.4. The derivative of the function r− : [2
√

3M,∞) → (3M, 6M ] is

dr−
dℓ

= −2M

ℓ3
1√

1 − 12M2

ℓ2

r2−(ℓ).

In particular, we have r−(ℓ2) ≤ r−(ℓ1) for all l2 ≥ l1.

Proof. The monotonicity of r−(ℓ) follows directly by proving that dr−
dℓ ≥ 0. We compute the derivative

dr−
dℓ

=
ℓ

M

(
1 −

√
1 − 12M2

ℓ2

)
− 6M

ℓ

1√
1 − 12M2

ℓ2

=
ℓ

M

1√
1 − 12M2

ℓ2

(√
1 − 12M2

ℓ2
−

(
1 − 12M2

ℓ2

)
− 6M

ℓ2

)

= − ℓ

2M

1√
1 − 12M2

ℓ2

(
1 −

√
1 − 12M2

ℓ2

)2

= −2M

ℓ3
1√

1 − 12M2

ℓ2

r2−(ℓ),

where we used the definition of r−(ℓ) in the last line. As a result, we obtain the desired monotonicity property
of r−(ℓ). □

We prove next the desired monotonicity property for the Lyapunov exponent λ
1
2 (ℓ).

Proposition 5.1.5. The derivative of the function λ : (2
√

3M,∞) → [0,∞) is

dλ

dℓ
=
M2

ℓ3
1

r−(ℓ)(r−(ℓ) − 3M)

1√
1 − 12M2

ℓ2

(
1 −

√
1 − 12M2

ℓ2

)(
1 + 4

√
1 − 12M2

ℓ2

)
.

In particular, we have λ(ℓ2) ≥ λ(ℓ1) for all l2 ≥ l1.

Proof. The monotonicity of λ(ℓ) follows directly by proving that dλ
dℓ ≥ 0. We first rewrite the function λ(ℓ)

as

λ(ℓ) :=
MΩ2(r−(ℓ))

r2−(ℓ)(r2−(ℓ) + ℓ2)
(r+(ℓ) − r−(ℓ)) =

M2

ℓ2
1

r2−(ℓ) − 3Mr−(ℓ)

√
1 − 12M2

ℓ2
,

where we used the definition of r±(ℓ). We compute the derivative

dλ

dℓ
= −2M2

ℓ3
1

r2− − 3Mr−

√
1 − 12M2

ℓ2
− M2

ℓ2
2r− − 3M

(r2− − 3Mr−)2
dr−
dℓ

√
1 − 12M2

ℓ2

+
12M4

ℓ5
1

r2− − 3Mr−

1√
1 − 12M2

ℓ2

=
2M2

ℓ3
1

r2− − 3Mr−

1√
1 − 12M2

ℓ2

(18M2

ℓ2
− 1

)
+

2M3

ℓ5
2r− − 3M

(r2− − 3Mr−)2
r2−(ℓ)

=
2M2

ℓ3
1

r−(r− − 3M)

1√
1 − 12M2

ℓ2

(18M2

ℓ2
− 1 +

√
1 − 12M2

ℓ2
+
Mr−
ℓ2

√
1 − 12M2

ℓ2

)

=
M2

ℓ3
1

r−(r− − 3M)

1√
1 − 12M2

ℓ2

(
1 −

√
1 − 12M2

ℓ2

)(
1 + 4

√
1 − 12M2

ℓ2

)
,

where we used Lemma 5.1.4 in the second equality, and the definition of r−(ℓ) in the last two lines. As a
result, we obtain the desired monotonicity property of λ(ℓ). □
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5.1.2. Expansion and contraction of the radial flow with ℓ ∈ (2
√

3M, 4M). Let us set the functionHℓ : [0,∞) →
R given by

Hℓ(E) :=
2M

1 − E2
− 2M

1 − E2
−(ℓ)

,

with ℓ ∈ (2
√

3M, 4M). Note that Hℓ(E) is conserved along the geodesic flow when the angular momentum
is ℓ. By Proposition 5.1.1, the union W+(ℓ) ∪ W−(ℓ) of the stable manifolds associated to the sphere of
trapped orbits S−(ℓ), is characterised as {Hℓ(E) = 0}.

It will be convenient to parametrise timelike geodesics by the time coordinate t̄ = s(1−E2)
1
2 in the domain

{E < 1}. We define the derivative along the geodesic flow with respect to t̄ as d
dt̄ = (1 − E2)−

1
2

d
ds .

Proposition 5.1.6. Let us consider the radial flow with ℓ ∈ (2
√

3M, 4M). The quantity Hℓ(E) satisfies

(47) Hℓ(E) =
r3

r2 − ℓ2

2M r + ℓ2

( (pr)2

1 − E2
+

(
1 +

a(ℓ)

r

)(
1 − r−(ℓ)

r

)2)
,

where

a(ℓ) =
2M2r−(ℓ)3

ℓ2(4M − r−(ℓ))(r−(ℓ) − 3M)
.

Set the functions φℓ
± : P ∩ {E < 1} → R given by

φℓ
±(x, p) :=

r
3
2

(r2 − ℓ2

2M r + ℓ2)
1
2

( pr

(1 − E2)
1
2

±
(
− a(ℓ)

r
− 1

) 1
2
(

1 − r−(ℓ)

r

))
.

Then, the derivative of φℓ
± along the geodesic flow is

(48)
dφℓ

±
dt̄

= ∓ r
1
2 (r − r+(ℓ))

2(−a(ℓ) − r)
1
2 (r2 − ℓ2

2M r + ℓ2)
φℓ
±.

Proof. Rearranging the mass-shell relation (23), we have

(49)
(pr)2

E2 − 1
− 1 =

2M

E2 − 1
· 1

r
− ℓ2

E2 − 1
· r − 2M

r3
=

2M

E2 − 1
·
r2 − ℓ2

2M r + ℓ2

r3
.

Evaluating this identity on (r = r−(ℓ), pr = 0), we obtain

(50)
ℓ2

E2
−(ℓ) − 1

= − ℓ2

2M
·

r3−

r2− − ℓ2

2M r− + ℓ2
=

r3−
4M − r−

,

where we used r2− − ℓ2

M r− + 3ℓ2 = 0 in the last equality. Putting together the identities (49) and (50), we
have

2M

E2 − 1
− 2M

E2
−(ℓ) − 1

=
r3

r2 − ℓ2

2M r + ℓ2
· (pr)2

E2 − 1
− 1

r2 − ℓ2

2M r + ℓ2

(
r3 +

2Mr3−
ℓ2(4M − r−)

(
r2 − ℓ2

2M
r + ℓ2

))
.

To obtain (47), it is enough to show that a(ℓ) satisfies

(51) r3 +
2Mr3−

ℓ2(4M − r−)
r2 −

r3−
4M − r−

r +
2Mr3−

4M − r−
= (r + a(ℓ))(r − r−)2.

Using the equation r2− − ℓ2

M r− + 3ℓ2 = 0, we first write

(r + a(ℓ))(r − r−)2 = (r + a(ℓ))
(
r2 − 2rr− +

ℓ2

M
(r− − 3M)

)
= r3 + (a(ℓ) − 2r−)r2 +

( ℓ2
M

(r− − 3M) − 2a(ℓ)r−

)
r +

ℓ2

M
(r− − 3M)a(ℓ).(52)
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The identity (51) follows if and only if the corresponding coefficients are equal, in other words, if

(53) a(ℓ) = 2r− +
2Mr3−

ℓ2(4M − r−)
, a(ℓ) =

1

2r−

( ℓ2
M

(r− − 3M) +
r3−

4M − r−

)
.

The identities (53) are proved by an elementary computation using r2− − ℓ2

M r− + 3ℓ2 = 0.

Before proceeding, we note that the functions φℓ
± are well-defined. On the one hand, r− + a(ℓ) > 0 when

ℓ ∈ (2
√

3M, 4M). Furthermore, we have

r2 − ℓ2

2M
r + ℓ2 = (r − ℓ2

4M
)2 +

ℓ2

16M2
(16M2 − ℓ2) ≥ 0

when ℓ ∈ (2
√

3M, 4M). Thus, the functions φℓ
± are well-defined on P ∩ {E < 1}.

We show next the relation (48). We first compute the derivative

d

ds

( r
3
2 pr

(r2 − ℓ2

2M r + ℓ2)
1
2

)
=

d

ds

( 1

(r2 − ℓ2

2M r + ℓ2)
1
2

)
r

3
2 pr +

1

(r2 − ℓ2

2M r + ℓ2)
1
2

d

ds
(r

3
2 pr)

=
(pr)2r

3
2 ( ℓ2

4M − r)

(r2 − ℓ2

2M r + ℓ2)
3
2

+
1

(r2 − ℓ2

2M r + ℓ2)
1
2

(3

2
r

1
2 (pr)2 − M

r
5
2

(
r2 − ℓ2

M
r + 3ℓ2

))
=

(pr)2r
1
2

2(r2 − ℓ2

2M r + ℓ2)
3
2

(
r2 − ℓ2

M
r + 3ℓ2

)
− 1

(r2 − ℓ2

2M r + ℓ2)
1
2

M

r
5
2

(
r2 − ℓ2

M
r + 3ℓ2

)
=

(r2 − ℓ2

M r + 3ℓ2)

(r2 − ℓ2

2M r + ℓ2)
3
2

r
1
2

2
(E2 − 1),(54)

where we used the mass-shell relation in the last equality. Secondly, we compute the derivative

d

ds

( (−r − a(ℓ))
1
2 (r − r−)

(r2 − ℓ2

2M r + ℓ2)
1
2

)
=

d

ds

( 1

(r2 − ℓ2

2M r + ℓ2)
1
2

)
(−r − a(ℓ))

1
2 (r − r−)

+
1

(r2 − ℓ2

2M r + ℓ2)
1
2

d

ds

(
(−r − a(ℓ))

1
2 (r − r−)

)
= − pr(−a(ℓ) − r)−

1
2

2(r2 − ℓ2

2M r + ℓ2)
3
2

(
2
( ℓ2

4M
− r

)
(r + a(ℓ))(r − r−) + (3r + 2a(ℓ) − r−)

(
r2 − ℓ2

2M
r + ℓ2

))
.

An explicit computation using r2− − ℓ2

M r− + 3ℓ2 = 0 and the definition of a(ℓ), shows that

2
( ℓ2

4M
− r

)
(r + a(ℓ))(r − r−) + (3r + 2a(ℓ) − r−)

(
r2 − ℓ2

2M
r + ℓ2

)
= r3 − r2r+.

Hence, we have

(55)
d

ds

( (−a(ℓ) − r)
1
2 (r − r−)

(r2 − ℓ2

2M r + ℓ2)
1
2

)
=

prr2(r − r+)

2(−a(ℓ) − r)
1
2 (r2 − ℓ2

2M r + ℓ2)
3
2

.

Putting together (54) and (55), we obtain (48). □

We observe that the term in the RHS of (48) satisfies

r
1
2 (r − r+(ℓ))

2(−a(ℓ) − r)
1
2 (r2 − ℓ2

2M r + ℓ2)

∣∣∣
r=r−(ℓ)

< 0.

This observation shows the local expansion and contraction properties of the geodesic flow near the unstable
and stable manifolds, respectively. By the identity (48), the Lyapunov exponent of (r−(ℓ), 0) can also be



DECAY PROPERTIES FOR MASSIVE VLASOV FIELDS ON SCHWARZSCHILD SPACETIME 31

written as

λ
1
2 (ℓ) =

(1 − E2
−(ℓ))

1
2

2E−(ℓ)

(r+(ℓ) − r−(ℓ))(r−(ℓ) − 2M)

r
1
2
−(−a(ℓ) − r−(ℓ))

1
2 (r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2)
.

Remark 5.1.2. The zero sets of the functions φℓ
+ and φℓ

− define only subsets of the unstable and stable

manifolds associated to the sphere S−(ℓ), respectively. In other words, for all ℓ ∈ (2
√

3M, 4M), we have

(56) W±
in/out(ℓ) :=

{
(x, p) ∈ P : ℓ(x, p) = ℓ, φℓ

∓(x, p) = 0
}
⊂W±(ℓ).

We note that the geodesics in the subsets W±
in/out(ℓ) of the stable manifolds are always either ingoing or

outgoing. In particular, the sets W±
in/out(ℓ) only contain the ingoing or the outgoing parts of the homoclinic

orbits in the energy level {E = E−(ℓ)}.

Next, we will show the exponential rate of contraction and expansion of the geodesic flow on the stable
manifolds W±(ℓ) in a neighbourhood of (r−(ℓ), 0). We show that the rate of contraction and expansion can
be taken arbitrarily close to the Lyapunov exponent in a small neighbourhood of (r−(ℓ), 0).

Proposition 5.1.7. Let ℓ ∈ (2
√

3M, 4M) and δ ∈ (0, λ
1
2 (ℓ)). There exists ϵ > 0 such that for every geodesic

γx,p : [0, a] → {|r − r−(ℓ)| ≲ ϵ} with (x, p) ∈W−(ℓ), we have

(57) |r(t(s)) − r−(ℓ)| ≲ 1

exp((λ
1
2 (ℓ) − δ)t(s))

, |pr(t(s))| ≤ 1

exp((λ
1
2 (ℓ) − δ)t(s))

for all s ∈ [0, a]. Moreover, for every geodesic γx,p : [−a, 0] → {|r− r−(ℓ)| ≤ ϵ} with (x, p) ∈W+(ℓ), we have

(58) |r(t(−s)) − r−(ℓ)| ≲ 1

exp((λ
1
2 (ℓ) − δ)|t(−s)|)

, |pr(t(−s))| ≲ 1

exp((λ
1
2 (ℓ) − δ)|t(−s)|)

,

for all s ∈ [−a, 0].

Proof. We suppose first that (x, p) ∈ W−(ℓ). By the invariance of the stable manifold W−(ℓ), we have that
(x(s), p(s)) ∈ W−(ℓ) for all s ≥ 0. Assuming that ϵ > 0 is sufficiently small (depending on ℓ), we have that
{|r − r−(ℓ)| ≤ ϵ} ∩W−(ℓ) is a subset of {φℓ

+ = 0}, so

pr

(1 − E2
−(ℓ))

1
2

= −
(
− a(ℓ)

r
− 1

) 1
2
(

1 − r−(ℓ)

r

)
.

As a result, the defining function φℓ
− satisfies the relations

(59) φℓ
−(x, p) = 2

ωℓ(r)p
r

(1 − E2
−(ℓ))

1
2

= −2ωℓ(r)
(
− a(ℓ)

r
− 1

) 1
2
(

1 − r−(ℓ)

r

)
,

where ωℓ(r) := r
3
2 (r2 − ℓ2

2M r + ℓ2)−
1
2 is a positive radial weight.

Next, we integrate the derivative (48) along the geodesic flow by

φℓ
−

(
x(t(s)), p(t(s))

)
= φℓ

−(x, p) exp
(
−

(1 − E2
−(ℓ))

1
2

E−(ℓ)

∫ t(s)

0

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)
dt
)
,

where here (x(0) = x, p(0) = p). In the following, we set ϵ > 0 small enough so that∣∣∣λ 1
2 (ℓ) −

(1 − E2
−(ℓ))

1
2

E−(ℓ)

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)

∣∣∣ ≤ δ,

for all (x, p) ∈ {|r − r−(ℓ)| ≤ ϵ}. As a result, we obtain the upper bound∣∣∣φℓ
−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−

(1 − E2
−(ℓ))

1
2

E−(ℓ)

∫ t(s)

0

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)
dt
)

≲ exp
(
− (λ

1
2 (ℓ) − δ)t(s)

)
.
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Finally, we use the relations (59) to show that

|r(t(s)) − r−(ℓ)| + |pr(t(s))| ≲
∣∣∣φℓ

−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
− (λ

1
2 (ℓ) − δ)t(s)

)
,

where we have used suitable lower bounds for the factors in (59). The case of a geodesic γx,p with (x, p) ∈
W+(ℓ) follows similarly. □

5.1.3. Expansion and contraction of the radial flow with ℓ = 4M . Let us consider the conserved quantity
along the geodesic flow given by

E2 − 1.

By Proposition 5.1.1, the union W+(4M) ∪ W−(4M) of the stable manifolds associated to the sphere of
trapped orbits S−(4M), is characterised as {E2 − 1 = 0}.

Proposition 5.1.8. Let us consider the radial flow with ℓ = 4M . The quantity E2 − 1 satisfies

(60) E2 − 1 = (pr)2 − 2M

r

(
1 − 4M

r

)2

.

Set the functions ψ4M
± : P → R given by

ψ4M
± (x, p) := pr ±

√
2M

r
1
2

(
1 − 4M

r

)
.

Then, the derivative of ψ4M
± along the geodesic flow is

(61)
dψ4M

±
ds

= ∓
√

2M

2

1

r
3
2

(
1 − 12M

r

)
ψ4M
± .

Proof. The identity (60) follows directly by using the mass-shell relation (23) with ℓ = 4M . We show next
(61). We first compute the derivative

(62)
d

ds

(r − 4M

r
3
2

)
= − pr

2r
5
2

(r − 12M).

Moreover, the radial geodesic equation is

(63)
dpr

ds
= −M

r4

(
r2 − 16Mr + 48M2

)
= −M

r4
(r − 4M)(r − 12M),

when ℓ = 4M . The identity (61) follows by putting together the identities (62) and (63). □

We note that the term in the RHS of (61) satisfies
√

2M

2

1

r
3
2

(
1 − 12M

r

)∣∣∣
r=4M

< 0.

This observation shows the local expansion and contraction properties of the geodesic flow near the unstable
and stable manifolds, respectively. By the identity (61), the Lyapunov exponent of (4M, 0) can also be
written as

λ
1
2 (4M) =

1

4
√

2M
=

√
2M

2r
3
2
−(4M)

( 12M

r−(4M)
− 1

)(
1 − 2M

r−(4M)

)
.

Remark 5.1.3. The zero sets of the functions ψ4M
+ and ψ4M

− define the unstable and stable manifolds associated
to the sphere S−(4M), respectively. In other words, the stable manifolds W±(4M) can be written as

(64) W±(4M) =
{

(x, p) ∈ P : ℓ(x, p) = 4M, ψ∓(4M)(x, p) = 0
}
.

Note the contrast between this property compared to the zero sets {φℓ
± = 0} in Remark 5.1.2.
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Proposition 5.1.9. Let δ ∈ (0, 1
8
√
2M

). There exists ϵ > 0 such that for every geodesic γx,p : [0, a] →
{|r − 4M | ≤ ϵ} with (x, p) ∈W−(4M), we have

(65) |r(t(s)) − 4M | ≲ 1

exp(( 1
8
√
2M

− δ)t(s))
, |pr(t(s))| ≲ 1

exp(( 1
8
√
2M

− δ)t(s))
,

for all s ∈ [0, a]. Moreover, for every geodesic γx,p : [−a, 0] → {|r − 4M | ≤ ϵ} with (x, p) ∈ W+(4M), we
have

(66) |r(t(−s)) − 4M | ≲ 1

exp(( 1
8
√
2M

− δ)|t(−s)|)
, |pr(t(−s))| ≲ 1

exp(( 1
8
√
2M

− δ)|t(−s)|)
,

for all s ∈ [−a, 0].

Proof. We suppose first that (x, p) ∈W−(4M). By the invariance of the stable manifold W−(4M), we have
that (x(s), p(s)) ∈W−(4M) for all s ≥ 0. By the characterisation (64) of the stable manifolds, we have that
{ψℓ

− = 0}, so

pr =

√
2M

r
1
2

(
1 − 4M

r

)
.

As a result, the defining function ψ4M
+ satisfies

(67) ψ4M
+ (x, p) = 2pr = 2

√
2M

r
1
2

(
1 − 4M

r

)
.

Next, we integrate the derivative (61) along the geodesic flow by

ψ4M
+

(
x(t(s)), p(t(s))

)
= ψ4M

+ (x, p) exp
(
−
∫ t(s)

0

√
2M

2

1

r
3
2

(
1 − 12M

r

)(
1 − 2M

r

)
dt
)
,

where here (x(0) = x, p(0) = p). Let us set ϵ > 0 small enough so that∣∣∣ 1

8
√

2M
−

√
2M

2

1

r
3
2

(
1 − 12M

r

)(
1 − 2M

r

)∣∣∣ ≤ δ,

for all (x, p) ∈ {|r − 4M | ≤ ϵ}. As a result, we have the upper bound∣∣∣ψ4M
+

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−
∫ t(s)

0

√
2M

2

1

r
3
2

(
1 − 12M

r

)(
1 − 2M

r

)
dt
)

≲ exp
(
−
( 1

8
√

2M
− δ

)
t(s)

)
.

Finally, we use the relations (67) to show that

|r(t(s)) − 4M | + |pr(t(s))| ≲
∣∣∣ψ4M

+

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−
( 1

8
√

2M
− δ

)
t(s)

)
,

where we have used lower bounds for the factors in (67). The case of a geodesic γx,p with (x, p) ∈W+(4M)
follows similarly. □

5.1.4. Expansion and contraction of the radial flow with ℓ ∈ (4M,∞). Let us set the function Hℓ : [0,∞) → R
given by

Hℓ(E) :=
2M

E2 − 1
− 2M

E2
−(ℓ) − 1

,

with ℓ ∈ (4M,∞). Note that Hℓ(E) is conserved along the geodesic flow when the angular momentum is
ℓ ≥ 0. By Proposition 5.1.1, the union W+(ℓ) ∪ W−(ℓ) of the stable manifolds associated to the sphere of
trapped orbits S−(ℓ), is characterised as {Hℓ(E) = 0}.

It will be convenient to parametrise timelike geodesics by the time coordinate t̄ = s(E2−1)
1
2 in the domain

{E > 1}. We define the derivative along the geodesic flow with respect to t̄ as d
dt̄ = (E2 − 1)−

1
2

d
ds .
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Proposition 5.1.10. Let us consider the radial flow with l > 4M . The quantity Hℓ(E) satisfies

(68) Hℓ(E) =
r3

r2 − ℓ2

2M r + ℓ2

( (pr)2

E2 − 1
−

(
1 +

a(ℓ)

r

)(
1 − r−(ℓ)

r

)2)
,

where

a(ℓ) =
2M2r−(ℓ)3

ℓ2(4M − r−(ℓ))(r−(ℓ) − 3M)
.

Set the functions φℓ
± : P ∩ {E > 1} → R given by

φℓ
±(x, p) :=

r
3
2

(r2 − ℓ2

2M r + ℓ2)
1
2

( pr

(E2 − 1)
1
2

±
(

1 +
a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

))
.

Moreover, the derivative of φℓ
± along the geodesic flow is

(69)
dφℓ

±
dt̄

= ± r
1
2 (r − r+(ℓ))

2(r + a(ℓ))
1
2 (r2 − ℓ2

2M r + ℓ2)
φℓ
±.

Proof. For ℓ ∈ (4M,∞), we have a(ℓ) > 0 by definition. Let r̄+(ℓ) > r̄−(ℓ) > 2M be the roots of r2− ℓ2

2M r+ℓ2.

The functions φℓ
± are well-defined on the set {r̄− < r < r̄+}, where the polynomial r2 − ℓ2

2M r+ ℓ2 is positive.
The identities (68) and (69) follow by the proof of Proposition 5.1.6. □

We note that the term in the RHS of (69) satisfies

r
1
2 (r − r+(ℓ))

2(r + a(ℓ))
1
2 (r2 − ℓ2

2M r + ℓ2)

∣∣∣
r=r−(ℓ)

< 0.

This shows the local expansion and contraction properties of the geodesic flow near the unstable and stable
manifolds, respectively. By the identity (69), the Lyapunov exponent of (r−(ℓ), 0) can also be written as

(70) λ
1
2 (ℓ) =

(E2
−(ℓ) − 1)

1
2

2E−(ℓ)

(r+(ℓ) − r−(ℓ))(r−(ℓ) − 2M)

r
1
2
−(a(ℓ) + r−(ℓ))

1
2 (r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2)
.

Remark 5.1.4. The zero sets of the functions φℓ
+ and φℓ

− define the unstable and stable manifolds associated
to the sphere of trapped orbits S−(ℓ), respectively. In other words, the stable manifolds W±(ℓ) can be
written as

W±(ℓ) =
{

(x, p) ∈ P : ℓ(x, p) = ℓ, φℓ
∓(x, p) = 0

}
.

This characterisation of the stable manifolds W±(ℓ) holds similarly as in the case when ℓ = 4M .

5.2. Degenerate trapping at ISCO. The unique sphere in P containing geodesics with ℓ = 2
√

3M is
S−(2

√
3M). This property contrasts with the case of geodesics with ℓ > 2

√
3M , which can be contained in

two different spheres. On the other hand, there are no geodesics contained in spheres of fixed radii when
ℓ < 2

√
3M . These properties hold because of a bifurcation of the radial dynamics at ℓ = 2

√
3M .

We recall that the fixed point (6M, 0) of the radial flow with ℓ = 2
√

3M is not hyperbolic, since

Φ2
√
3M (6M) = 0. In spite of this, there are still suitable stable and unstable manifolds W±(2

√
3M) associ-

ated to the sphere S−(2
√

3M). The submanifolds W±(2
√

3M) are contained on the energy level {E = 2
√
2

3 }
of the radial flow when ℓ = 2

√
3M . We parametrise the radial momentum coordinate pr of future-trapped

and past-trapped geodesics with ℓ = 2
√

3M and E = 2
√
2

3 , by

pr,−
2
√
3M

(r) :=
1

3

(6M

r
− 1

) 3
2

and pr,+
2
√
3M

(r) := −1

3

(6M

r
− 1

) 3
2

,

respectively. We summarise this discussion with the following proposition.
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Proposition 5.2.1. The stable manifolds of the sphere of trapped orbits S−(2
√

3M) are analytic codimension
two submanifolds of P, given by

W+(2
√

3M) =
{

(x, p) ∈ P : ℓ(x, p) = 2
√

3M, pr = pr,+
2
√
3M

}
,

W−(2
√

3M) =
{

(x, p) ∈ P : ℓ(x, p) = 2
√

3M, pr = pr,−
2
√
3M

}
.

In particular, the intersection W+(2
√

3M) ∩ W−(2
√

3M) is equal to the sphere S−(2
√

3M).

By definition, the stable manifolds W±(2
√

3M) are defined in the region {r ≤ 6M}.

5.2.1. Expansion and contraction of the radial flow with ℓ = 2
√

3M . Let us set the function H2
√
3M : [0,∞) →

R given by

H2
√
3M (E) :=

2M

1 − E2
− 18M.

Note that H2
√
3M (E) is conserved along the geodesic flow when ℓ = 2

√
3M . The union W+(2

√
3M) ∪

W−(2
√

3M) of the stable manifolds associated to the sphere S−(2
√

3M), is characterised as {H2
√
3M (E) =

0}.

Proposition 5.2.2. Consider the radial flow with ℓ = 2
√

3M . The conserved quantity H2
√
3M (E) satisfies

(71) H2
√
3M (E) =

r3

r2 − 6Mr + 12M2

( (pr)2

1 − E2
−
(6M

r
− 1

)3)
.

Set the functions φ2
√
3M

± : P ∩ {E < 1} → R given by

φ2
√
3M

± (x, p) :=
r

3
2

(r2 − 6Mr + 12M2)
1
2

( pr

(1 − E2)
1
2

∓
(6M

r
− 1

) 3
2
)
.

Then, the derivative of φ2
√
3M

± along the geodesic flow is

(72)
dφ2

√
3M

±
dt̄

= ± r
1
2 (6M − r)

1
2

2(r2 − 6Mr + 12M2)
φ2

√
3M

± .

Proof. We first note that the functions φ2
√
3M

± are well-defined on {r ≤ 6M} since

r2 − 6Mr + 12M2 = (r − 3M)2 + 3M2 ≥ 3M2.

The identities (71) and (72) follow by the proof of Proposition 5.1.6. □

We observe that the term in the RHS of (72) satisfies

(73)
r

1
2 (6M − r)

1
2

2(r2 − 6Mr + 12M2)
> 0,

whenever r < 6M . This shows the local expansion and contraction properties of the geodesic flow near the
unstable and stable manifolds, respectively. However, the expansion and contraction properties degenerate,
since the function in (73) vanishes at r = 6M .

Remark 5.2.1. The zero sets of the functions φ2
√
3M

+ and φ2
√
3M

− define the unstable and stable manifolds

associated to the sphere S−(2
√

3M), respectively. In other words, the stable manifolds W±(2
√

3M) can be
written as

(74) W±(2
√

3M) =
{

(x, p) ∈ P : ℓ(x, p) = 2
√

3M, φ2
√
3M

∓ (x, p) = 0
}
.

For the fixed point (r = 6M, pr = 0), the rate of contraction and expansion for the geodesic flow on the
stable manifolds W±(6M) is of the form t3. We proceed to show this rate of contraction and expansion in a
neighbourhood of {r = 6M, pr = 0}.



36 RENATO VELOZO RUIZ

Proposition 5.2.3. For every geodesic γx,p : [0, a] → {5M ≤ r ≤ 6M} with (x, p) ∈W−(2
√

3M), we have

(75) |r(t(s)) − 6M | 32 ≲
1

t3(s)
, |pr(t(s))| ≲ 1

t3(s)
, ∀s ∈ [0, a].

Moreover, for every geodesic γx,p : [−a, 0] → {5M ≤ r ≤ 6M} with (x, p) ∈W+(2
√

3M), we have

(76) |r(t(−s)) − 6M | 32 ≲
1

|t3(−s)|
, |pr(t(−s))| ≲ 1

|t3(−s)|
, ∀s ∈ [−a, 0].

Proof. We suppose first that (x, p) ∈ W−(2
√

3M). By the invariance of the stable manifold W−(4M), we

have that (x(s), p(s)) ∈ W−(2
√

3M) for all s ≥ 0. By the characterisation (74) of the stable manifolds, we

have that {φ2
√
3M

+ = 0}, so

(77) 3pr =
(6M

r
− 1

) 3
2

,

since E = 2
√
2

3 . As a result, the defining function φ2
√
3M

− satisfies that

φ2
√
3M

− (x, p) = 2ω2
√
3M (r)

pr

(1 − E2)
1
2

= 2ω2
√
3M (r)

(6M

r
− 1

) 3
2

,

where ω2
√
3M (r) = r

3
2 (r2 − 6Mr + 12M2)−

1
2 is a positive radial weight.

If (x, p) ∈W−(2
√

3M), then γ is outgoing. So, by integrating the relation (77), we obtain

s

3
=

∫ r(s)

r(0)

r
3
2

(6M − r)
3
2

dr

= −18M arcsin

√
r(s)

6M
+

√
r(s)(18M − r(s))√

6M − r(s)
+ 18M arcsin

√
r(0)

6M
−

√
r(0)(18M − r(0))√

6M − r(0)

≲ 1 +
1√

6M − r(s)
,

(78)

Moreover, we have the lower bound

s =

∫ t(s)

0

dt

pt
=

3

2
√

2

∫ t(s)

0

(
1 − 2M

r

)
dt ≳ t(s),

since E = 2
√
2

3 . Therefore, we have

(79) pr(t(s)) =
(6M − r(t(s)))

3
2

3r
3
2 (t(s))

≲ t−3(s),

for all s ≥ 0. A similar argument treats the case of a geodesic γx,p with (x, p) ∈W+(2
√

3M). □

5.3. Parabolic trapping at infinity. For all ℓ ≥ 0, the radial potential Vℓ has a local maximum at infinity.
The maximum at infinity takes the value one, which corresponds to the rest mass of the particles in the
systems we consider. The radial geodesic equation (24) shows the existence of orbits at infinity contained in
the spheres

S∞(ℓ) :=
{

(x, p) ∈ P : ℓ(x, p) = ℓ, r = ∞, pr = 0
}
.

These orbits have particle energy E = 1, by the mass-shell relation. We call S∞(ℓ) spheres of trapped orbits
at infinity, and the orbits they contain trapped orbits at infinity.

We will show that the fixed point (
√

2Mr−
1
2 = 0, pr = 0) of the radial flow is parabolic. Furthermore,

we will identify suitable stable and unstable manifolds W±
1 (ℓ) associated to the sphere of trapped orbits at
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infinity S∞(ℓ). The submanifolds W±
1 (ℓ) are contained on the energy level {E = 1}. We parametrise the

momentum coordinate pr of future-trapped and past-trapped orbits at infinity, by

pr,−ℓ,1 (r) :=

√
2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

and pr,+ℓ,1 (r) := −
√

2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

,

respectively.
We summarise this discussion with the following proposition.

Proposition 5.3.1. Let ℓ ∈ [0, 4M ]. The stable manifolds of the sphere S∞(ℓ) at infinity are analytic
codimension two submanifolds of P, given by

W+
1 (ℓ) =

{
(x, p) ∈ P : ℓ(x, p) = ℓ, pr = pr,+ℓ,1

}
,

W−
1 (ℓ) =

{
(x, p) ∈ P : ℓ(x, p) = ℓ, pr = pr,−ℓ,1

}
.

Moreover, the intersection W+
1 (ℓ) ∩ W−

1 (ℓ) is equal to the sphere S∞(ℓ) when ℓ > 4M , and the intersection
W+

1 (4M) ∩ W−
1 (4M) is equal to S∞(4M) ∪ S(4M).

If ℓ ∈ [0, 4M), the stable manifolds W±
1 (ℓ) are contained in the unbounded region {r > 2M}. By definition

of pr,±ℓ,1 , we have r2 − ℓ2

2M r + ℓ2 ≥ 0 for all (x, p) ∈W±
1 (ℓ). Furthermore, if ℓ ∈ [0, 4M), we have

∀r > 2M, r2 − ℓ2

2M
r + ℓ2 =

(
r − ℓ2

4M

)2

+
ℓ2

16M2
(16M2 − ℓ2) ≥ 0.

Thus, W±
1 (ℓ) are indeed contained in the unbounded region {r > 2M}. In contrast, if ℓ = 4M , then the stable

manifolds W±
1 (4M) are only contained in {r ≥ 4M}. This property holds since r2 − ℓ2

2M r + ℓ2 = (r − 4M)2

if ℓ = 4M .

Proposition 5.3.2. Let ℓ > 4M . The stable manifolds of the sphere S∞(ℓ) at infinity, are analytic codi-
mension two submanifolds of P, given by

W±
1 (ℓ) =

{
(x, p) ∈ P : ℓ(x, p) = ℓ, pr = pr,+ℓ,1

}
∪
{

(x, p) ∈ P : ℓ(x, p) = ℓ, pr = pr,−ℓ,1

}
,

In particular, the stable manifolds W+
1 (ℓ) and W−

1 (ℓ) are equal.

If ℓ > 4M , the stable manifolds W±
1 (ℓ) are only contained in {r ≥ r̄+(ℓ)}, where r̄+(ℓ) is the larger root

of the polynomial r2 − ℓ2

2M r + ℓ2.

Remark 5.3.1. For ℓ > 4M , all the orbits in the stable manifolds are of homoclinic type. In other words,
these orbits satisfy that lims→±∞(r(s), pr(s)) = (∞, 0). Thus, the sets of future-trapped and past-trapped
orbits at infinity are both equal, and characterised as {E(x, p) = 1}.

5.3.1. Parabolic behaviour at infinity. Let us show the parabolic behaviour of the fixed point (
√

2Mr−
1
2 =

0, pr = 0) at infinity. For this purpose, we will consider the McGehee type coordinates

x =

√
2M

r
, y = pr.

This coordinate system for the radial flow takes infinity to the origin. Furthermore, it allows us to analyse
the behaviour of the radial flow in a neigbourhood of the spheres S∞(ℓ) at infinity. Similar coordinates were
first introduced by McGehee [McG] for the study of stable manifolds for parabolic fixed points at infinity
with applications to celestial mechanics.

Proposition 5.3.3. Consider the radial flow with angular momentum ℓ. The geodesic flow for the McGehee
type coordinates is given by

dx

ds
= − x3

4M
∂yKl = −x

3y

4M
,

dy

ds
=

x3

4M
∂xKl =

x3

4M

(
− x+

ℓ2

2M2
x3 − 3ℓ2

4M2
x5

)
,
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where

Kl(x, y) :=
y2

2
− x2

2
+

ℓ2

8M2
(x4 − x6) =

E2 − 1

2
.

Proof. First, the derivative of x along the geodesic flow is

dx

ds
=

√
2M

d

ds
(r−

1
2 ) = − 1

2r
3
2

pr = −x
3y

4M
.

The derivative of y along the geodesic flow is exactly the radial geodesic equation, so

dy

ds
= −M

r4

(
r2 − ℓ2

M
r + 3ℓ2

)
= −M

r
3
2

( 1

r
1
2

− ℓ2

M

1

r
3
2

+ 3ℓ2
1

r
5
2

)
=

x3

4M

(
− x+

ℓ2

2M2
x3 − 3ℓ2

4M2
x5

)
.

By the mass-shell relation, the conserved quantity E2−1
2 is equal to

E2 − 1

2
=

1

2
(pr)2 − M

r
1
2

( 1

r
1
2

− ℓ2

2M

1

r
3
2

+
ℓ2

r
5
2

)
=
y2

2
− x2

2
+

ℓ2

8M2
(x4 − x6).

By a direct computation of the partial derivatives of Kl(x, y), we obtain the final identities. □

5.3.2. Expansion and contraction of the radial flow with E = 1. Let us consider the conserved quantity along
the geodesic flow given by

E2 − 1.

By Proposition 5.3.1, the union W+
1 (ℓ) ∪ W−

1 (ℓ) of the stable manifolds associated to the sphere at infinity
S∞(ℓ), is characterised as {E2 − 1 = 0}.

Proposition 5.3.4. Let us consider the radial flow with ℓ ≥ 0. The quantity E2 − 1 satisfies

(80) E2 − 1 = (pr)2 − 2M

r3

(
r2 − ℓ2

2M
r + ℓ2

)
Set the functions ψℓ

± : P → R given by

ψℓ
±(x, p) := pr ∓ (2M)

1
2

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

.

Then, the derivative of ψℓ
± along the geodesic flow is

(81)
dψℓ

±
ds

= ∓
√

2M(r2 − ℓ2

M r + 3ℓ2)

2r
5
2 (r2 − ℓ2

2M r + ℓ2)
1
2

ψℓ
±.

Proof. The identity (80) follows directly by the mass-shell relation. We note that the functions ψℓ
± are well-

defined whenever r2− ℓ2

2M r+ℓ2 ≥ 0. Furthermore, as long as r is sufficiently large, we have r2− ℓ2

2M r+ℓ2 ≥ 0
for all ℓ ≥ 0. We finally show (81). We first compute the derivative

d

ds

(√2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2
)

=

√
2M

r3

( d

ds

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

r
3
2 − d

ds
r

3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2
)

= − pr

2r
5
2 (r2 − ℓ2

2M r + ℓ2)
1
2

(
r2 − ℓ2

M
r + 3ℓ2

)
.(82)

We obtain (81) by the radial geodesic equation and (82). □

We observe that the term in the RHS of (81) satisfies

(83)

√
2M(r2 − ℓ2

M r + 3ℓ2)

2r
5
2 (r2 − ℓ2

2M r + ℓ2)
1
2

> 0,

for r sufficiently large in terms of ℓ. This shows the local expansion and contraction properties of the geodesic
flow near the parabolic unstable and stable manifolds, respectively. However, the expansion and contraction
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properties degenerate at infinity, since the function (83) vanishes at r = ∞. This degeneracy is due to the

parabolic behaviour of the fixed point (
√

2Mr−
1
2 = 0, pr = 0).

Remark 5.3.2. The zero sets of the functions ψℓ
+ and ψℓ

− define subsets of the parabolic stable and unstable
manifolds associated to the sphere S∞(ℓ), respectively. For all ℓ ∈ [0, 4M ], we have

W±
1 (ℓ) =

{
(x, p) ∈ P : ℓ(x, p) = ℓ, ψℓ

∓(x, p) = 0
}
.

On the other hand, for all ℓ ∈ (4M,∞), we have

W±
1,in/out(ℓ) :=

{
(x, p) ∈ P : ℓ(x, p) = ℓ, ψℓ

∓(x, p) = 0
}
⊂W±

1 (ℓ).

We note that the geodesics in the subsets W±
1,in/out(ℓ) of the stable manifolds are always either ingoing or

outgoing. In particular, the sets W±
in/out(ℓ) only contain the ingoing or the outgoing part of the homoclinic

orbits in the energy level {E = 1} when ℓ ∈ (4M,∞).

For the parabolic fixed point (
√

2Mr−
1
2 = 0, pr = 0), the rate of contraction and expansion for the

geodesic flow on the stable manifolds W±
1 (ℓ) is given by t

1
3 . We proceed to show this behaviour using the

McGehee type coordinates (
√

2Mr−
1
2 , pr).

Proposition 5.3.5. Let R > 2M . For every geodesic γx,p : [0, a] → {r ≥ R} with (x, p) ∈W−
1 (ℓ), we have√

2M

r(t(s))
≲

1

t
1
3 (s)

, |pr(t(s))| ≲ 1

t
1
3 (s)

, ∀s ∈ [0, a].

Moreover, for every geodesic γx,p : [0, a] → {r ≥ R} with (x, p) ∈W+
1 (ℓ), we have√

2M

r(t(−s))
≲

1

|t 1
3 (−s)|

, |pr(t(−s))| ≲ 1

|t 1
3 (−s)|

, ∀s ∈ [−a, 0].

Proof. We suppose first that (x, p) ∈ W−
1 (ℓ). By the invariance of the stable manifold W−

1 (ℓ), we have that
(x(s), p(s)) ∈ W−

1 (ℓ) for all s ≥ 0. We first consider the case of radial geodesics, i.e. orbits with ℓ = 0. If
ℓ = 0 and E = 1, then the mass-shell relation (23) is given by (pr)2 = 2M

r . We recall that γ is outgoing if

(x, p) ∈W−
1 (0). So, we can integrate the mass-shell relation by

2

3
r

3
2 (s) − 2

3
r

3
2 (0) =

∫ r(s)

r(0)

√
rdr =

√
2Ms.

Furthermore, we have the lower bound

s =
√

2M

∫ t(s)

0

dt

pt
=

√
2M

∫ t(s)

0

(
1 − 2M

r

)
dt ≳ t(s),

since E = 1. As a result, we have t(s) ≲ r
3
2 (s), so

(84)

√
2M

r(s)
≲

1

t
1
3 (s)

.

The decay of pr follows then, by using the identity (pr)2 = 2M
r . The argument works similarly if (x, p) ∈

W+
1 (0) instead.
Next, we consider the general case of geodesics with ℓ > 0. If E = 1, then the mass-shell relation (23) can

be written as (pr)2 = 2M
r3 (r2− ℓ2

2M r+ ℓ2). We recall that γ is outgoing if (x, p) ∈W−
1 (ℓ). So, we can integrate

the mass-shell relation by

2

3
r

3
2 (s) − 2

3
r

3
2 (0) ≳

∫ r(s)

r(0)

r
3
2

(r2 − ℓ2

2M r + ℓ2)
1
2

dr =
√

2Ms.
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Furthermore, we have the lower bound

s =
√

2M

∫ t(s)

0

dt

pt
=

√
2M

∫ t(s)

0

(
1 − 2M

r

)
dt ≳ t(s),

since E = 1. As a result, we have t(s) ≲ r
3
2 (s), so

(85)

√
2M

r(s)
≲

1

t
1
3 (s)

.

The decay of pr follows then, by using (pr)2 = 2M
r3 (r2 − ℓ2

2M r + ℓ2). The argument works similarly if (x, p) ∈
W+

1 (ℓ) instead. □

6. Concentration estimates on the stable manifolds

In this section, we prove concentration estimates on the stable manifolds associated to the three forms of
trapping on D: unstable trapping, degenerate trapping at ISCO, and parabolic trapping at infinity. These
estimates will be obtained by integrating the radial flow in the different regions of the mass-shell, depending
on the form of the radial potential Vℓ. We recall that the mass-shell relation can be written as

(86) E2 = (pr)2 + Vℓ(r),

which can be integrated along the geodesic flow. We decompose the dispersive region D into the three
invariant regions

Dlow :=
{

(x, p) ∈ D : ℓ(x, p) ∈ [0, 2
√

3M ]
}
,

Dbd :=
{

(x, p) ∈ D : ℓ(x, p) ∈ [2
√

3M, 4M ]
}
,

Dhigh :=
{

(x, p) ∈ D : ℓ(x, p) ∈ [4M,∞)
}
.

We note that D = Dlow ∪ Dbd ∪ Dhigh. In the following three subsections, we show concentration estimates
on the stable manifolds in the region Dlow, the region Dbd, and the region Dhigh, respectively.

6.1. The region Dlow. In this region, the radial potential Vℓ satisfies d
drVℓ ≥ 0 for all r ≥ 2M . Furthermore,

the derivative d
drVℓ only vanishes at r = 6M when ℓ = 2

√
3M . Moreover, the potential Vℓ(r) has a maximum

at infinity where limr→∞ Vℓ(r) = 1. One can easily show that there are only two types of trapping in Dlow:
parabolic trapping at infinity, and degenerate trapping at ISCO.

6.1.1. The subregion E ∼ 1. Let us study concentration estimates on the parabolic manifolds at the energy
level {E = 1}. Parabolic trapping at infinity holds for all ℓ ∈ [0, 2

√
3M ] in Dlow. We will estimate the radial

flow in a uniform neighbourhood of the parabolic manifolds, where geodesics spend arbitrarily long periods
of time in the far-away region, before crossing H+. We begin considering the case of radial geodesics, in other
words, orbits with vanishing angular momentum.

Proposition 6.1.1. Let R > r0 > 2M . For every geodesic γx,p : [0, a] → {r > r0} with angular momentum
ℓ = 0, particle energy E ∈ ( 95

100 , 1), and initial data (x, p) ∈ {r < R}, we have

(87) |1 − E2| ≲ 1

v
2
3 (s)

, ∀s ∈ [0, a].



DECAY PROPERTIES FOR MASSIVE VLASOV FIELDS ON SCHWARZSCHILD SPACETIME 41

Moreover, for all s ∈ [0, a], we have∣∣∣√ 2M

r(s)
− pr(s)

∣∣∣ ≲ 1

v
1
3 (s)

, if pr ≥ 0,

∣∣∣√ 2M

r(s)
+ pr(s)

∣∣∣ ≲ 1

v
1
3 (s)

, if pr ≤ 0.

The same decay estimates hold with respect to the time coordinate u.

Proof. If ℓ = 0, then the mass-shell relation (86) can be written as

(88) 1 − E2 =
2M

r
− (pr)2.

So, for radial geodesics with E < 1, the radial momentum coordinate pr vanishes at r = 2M
1−E2 . We note that

the turning point at r = 2M
1−E2 moves to infinity as E → 1.

Let us suppose first that γ is an outgoing geodesic. Integrating the mass-shell relation (88), we have

s =

∫ 2M
1−E2

r(0)

dr

( 2M
r − (1 − E2))

1
2

=
1√

1 − E2

∫ 2M
1−E2

r(0)

dr

( 2M
1−E2

1
r − 1)

1
2

.(89)

By using the change of variables r 7→ r̃0(r) := r(1 − E2), we have

(90)
1√

1 − E2

∫ 2M
1−E2

r(0)

dr

( 2M
1−E2

1
r − 1)

1
2

=
1

(1 − E2)
3
2

∫ 2M

r(0)(1−E2)

dr̃0

( 2M
r̃0

− 1)
1
2

≲
1

(1 − E2)
3
2

,

where the estimate above follows by an explicit computation of the integral term. Moreover, the coordinate
pv satisfies Ω2pv ≤ E < 1, so

(91) s =

∫ v(s)

v0

dv

pv
≥

∫ v(s)

v0

Ω2(r)dv ≳ v(s),

since γ(s) ∈ {r > r0 > 2M} for all s ∈ [0, a]. As a result, we obtain the second estimate in (87) by∣∣∣ 2M

r(s)
− pr(s)2

∣∣∣ = |1 − E2| ≲ v−
2
3 (s),

by putting together (90) and (91). Finally, we obtain the first estimate in (87) by∣∣∣√ 2M

r(s)
− pr(s)

∣∣∣ ≤ |1 − E2| 12 ≲ v−
1
3 (s),

where we used the 1
2 -Hölder continuity of the square root.

Analogous estimates hold when γ is ingoing instead. For geodesics with a turning point at r = 2M
1−E2 , we

put together the estimates in the case where γ is outgoing and ingoing. The decay estimates in (87) also hold
with respect to u. For this, we use that s ≳ u(s) since γ(s) ∈ {r > r0 > 2M} for all s ∈ [0, a]. □

We extend next Proposition 6.1.1 to the case of geodesics with ℓ ≤ 2
√

3M . In this regime, we will consider
geodesics γx,p with particle energy E ∈ ( 95

100 , 1), so that we localise the behaviour of the geodesic flow near

the parabolic stable manifolds W±
1 (ℓ).

Proposition 6.1.2. Let R > r0 > 12M . For every geodesic γx,p : [0, a] → {r > r0} with angular momentum

ℓ ≤ 2
√

3M , particle energy E ∈ ( 95
100 , 1), and initial data (x, p) ∈ {r < R}, we have

(92) |1 − E2| ≲ 1

v
2
3 (s)

, ∀s ∈ [0, a].
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Moreover, for all s ∈ [0, a], we have∣∣∣√2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2 − pr

∣∣∣ ≲ 1

v
1
3 (s)

, if pr ≥ 0,(93)

∣∣∣√2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

+ pr
∣∣∣ ≲ 1

v
1
3 (s)

, if pr ≤ 0.(94)

The same decay estimates hold with respect to the time coordinate u.

Proof. We first write the mass-shell relation (86) as

(95) 1 − E2 =
2M

r3

(
r2 − ℓ2

2M
r + ℓ2

)
− (pr)2.

Let E < 1. By the form of the radial potential Vℓ, we define the unique root of E2 − Vℓ(r) as rE . The radial
momentum coordinate pr vanishes at r = rE . A direct computation shows that

E2 − Vℓ

( 2M

1 − E2

)
< 0 < E2 − Vℓ

( M

1 − E2

)
,

so rE ∈ ( M
1−E2 ,

2M
1−E2 ). As a result, the turning point at r = rE moves to infinity as E → 1.

We suppose first that γ is an outgoing geodesic. Integrating the mass-shell relation (95), we have

s =

∫ rE

r(0)

dr

( 2M
r3 (r2 − ℓ2

2M r + ℓ2) − (1 − E2))
1
2

=
1√

1 − E2

∫ rE

r(0)

dr

( 2M
1−E2

1
r3 (r2 − ℓ2

2M r + ℓ2) − 1)
1
2

.

Let us set the function r̃ℓ : [2M,∞) → R given by

r̃ℓ(r) :=
r3

r2 − ℓ2

2M r + ℓ2
(1 − E2).

The function r̃ℓ(r) is well-defined on [2M,∞), since r2 − ℓ2

2M r + ℓ2 is positive when ℓ ≤ 2
√

3M . In the rest
of the proof, we denote r̃ℓ(r) simply as r̃(r). We now compute the derivative

dr̃

dr
= r2

r2 − ℓ2

M r + 3ℓ2

(r2 − ℓ2

2M r + ℓ2)2
(1 − E2).

We note that (1 − E2)dr̃
dr (r) > 0 for r > r0 > 12M . By using the change of variables r 7→ r̃(r), we have

1√
1 − E2

∫ rE

r(0)

dr

( 2M
1−E2

1
r3 (r2 − ℓ2

2M r + ℓ2) − 1)
1
2

=
1

(1 − E2)
3
2

∫ r̃(rE)

r̃(0)

dr̃

( 2M
r̃ − 1)

1
2

≲
1

(1 − E2)
3
2

,

where the estimate above follows by an explicit computation of the integral term. As a result, we obtain the
second estimate in (92) by ∣∣∣ 2M

r(s)
− ℓ2

r2(s)
+

2Mℓ2

r3(s)
− pr(s)2

∣∣∣ = |1 − E2| ≲ v−
2
3 (s),

where we have used that s ≳ v(s) since γ([0, a]) ⊂ {r > r0}. See the estimate (91). Finally, the we obtain
the estimate (93) by ∣∣∣√2M

r3

(
r2 − ℓ2

2M
r + ℓ2

)
− pr

∣∣∣ ≤ |1 − E2| 12 ≲ v−
1
3 (s),

where we used the 1
2 -Hölder continuity of the square root.

Analogous estimates hold when γ is ingoing instead. For geodesics with a turning point at r̃ℓ(rE), we put
together the estimates in the case where γ is outgoing and ingoing. The decay estimates in (92) also hold
with respect to u. For this, we use that s ≳ u(s) since γ([0, a]) ∈ {r > r0 > 12M}. □
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Remark 6.1.1. The decay rate t−
2
3 in Proposition 6.1.2 holds because the radial potential Vℓ(r) satisfies

|Vℓ(r) − 1| ∼ 2Mr−1 when r goes to infinity. More generally, for a radial potential Φ(r) satisfying that

|Φ(r) − 1| ∼ r−n when r goes to infinity, one could show concentration estimates with the decay rate t−
2n

n+2 .
This observation is relevant when considering decay estimates for massive Vlasov fields on higher dimensional
Schwarzschild black holes.

6.1.2. The subregion ℓ ∼ 2
√

3M and E ∼ 2
√
2

3 . Let us study concentration estimates on the stable manifolds
associated to the degenerate trapping at ISCO in the region Dlow. We recall that this form of trapping

holds for ℓ = 2
√

3M and E = 2
√
2

3 . We will control the radial flow in a uniform neighbourhood of the

sphere S−(2
√

3M). We will first consider the case of geodesics contained in {ℓ = 2
√

3M}. Note that the set

{ℓ = 2
√

3M} is located at the boundary of Dlow.

Proposition 6.1.3. For every geodesic γx,p : [0, a] → {5M < r < 7M} with angular momentum ℓ = 2
√

3M

and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have∣∣∣ 2M

1 − E2
− 18M

∣∣∣ ≲ 1

v6(s)
, ∀s ∈ [0, a].

Moreover, for all s ∈ [0, a], we have

|pr(s)| ≲ 1

v3(s)
, if r(s) ≥ 6M,(96) ∣∣∣ pr√

1 − E2
−
(6M

r
− 1

) 3
2
∣∣∣ ≲ 1

v3(s)
, if r(s) ≤ 6M.(97)

The same decay estimates hold with respect to the time coordinate u.

Proof. By Proposition 5.2.2, the mass-shell relation (86) can be written as

(98) H2
√
3M (E) :=

2M

1 − E2
− 18M = ω2

√
3M

( (pr)2

1 − E2
−

(6M

r
− 1

)3)
,

where ω2
√
3M (r) := r3(r2−6Mr+12M2)−1. For simplicity, we write below H and ω, for H2

√
3M and ω2

√
3M ,

respectively. By the form of the radial potential Vℓ, we define rH as the unique real value such that

H =
(rH − 6M)3

r2H − 6MrH + 12M2
.

The radial momentum coordinate pr vanishes at r = rH by (98). Moreover, one can show that rH ∈ {5M <
r < 7M}.

We suppose first that γ is an outgoing geodesic. We will consider three different cases: geodesics in the
region {r ≥ 6M}, in the region {r ≤ 6M, H > 0}, or in the region {r ≤ 6M, H < 0}.

The region {r ≥ 6M}. We first note that orbits in {r ≥ 6M} satisfy H > 0 by definition of H. Without
loss of generality, we consider the case when r(0) = 6M . Integrating the geodesic equation (98), we have

t̄ =

∫ rH

6M

dr

(H
ω − (1 − 6M

r )3)
1
2

=
1

H
1
2

∫ rH

6M

ω
1
2 dr

(1 − (1 − 6M
r )3 ω

H )
1
2

,(99)

since the geodesic γ is outgoing. Let us set the function r̃2
√
3M : [2M,∞) → R given by

(100) r̃2
√
3M (r) = 6M +

1

H
1
3

r − 6M

(r2 − 6Mr + 12M2)
1
3

.

The function r̃2
√
3M (r) is well-defined on [2M,∞) since r2 − 6Mr + 12M2 ≥ 3M2. In the rest of the proof,

we denote r̃2
√
3M simply as r̃. We compute the radial derivative

dr̃

dr
=

1

H
1
3

( 1

(r2 − 6Mr + 12M2)
1
3

− 2(r − 3M)(r − 6M)

3(r2 − 6Mr + 12M2)
4
3

)
.



44 RENATO VELOZO RUIZ

We note that

H
1
3

dr̃

dr

∣∣∣
r=6M

=
1

3
√

12M2
> 0.

Furthermore, the derivative dr̃
dr is positive in a neighbourhood of r = 6M .

By using the change of variables r 7→ r̃(r), we have

1

H
1
2

∫ rH

6M

ω
1
2 dr

(1 − (1 − 6M
r )3 ω

H )
1
2

=
1

H
1
6

∫ r̃(rH)

6M

ω
1
2

(1 − (r̃ − 6M)3)
1
2

dr

dr̃
dr̃

≲
1

H
1
6

∫ r̃(rH)

6M

dr̃

(1 − (r̃ − 6M)3)
1
2

≲
1

H
1
6

,(101)

where the last estimate follows by an explicit computation of the integral term. As a result, we obtain√
H ≲ v−3(s), where we have used that t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case

since

|pr(s)| ≲
√
H ≲ v−3(s),

by the positivity of the second term in the definition of H in (98).
The region {r ≤ 6M, H > 0}. Without loss of generality, we consider the case when r(a) = 6M .

Integrating the geodesic equation (98), we have

t̄ =

∫ 6M

r(0)

dr

(( 6M
r − 1)3 + H

ω )
1
2

=
1

H
1
2

∫ 6M

r(0)

ω
1
2 dr

(( 6M
r − 1)3 ω

H + 1)
1
2

.

By using the change of variables r 7→ r̃(r), we have

1

H
1
2

∫ 6M

r(0)

ω
1
2 dr

(( 6M
r − 1)3 ω

H + 1)
1
2

=
1

H
1
6

∫ r̃(6M)

r̃(0)

ω
1
2

((6M − r̃)3 + 1)
1
2

dr

dr̃
dr̃ ≲ H− 1

6 ,

where the estimate follows in the same way as in (101). As a result, we obtain
√
H ≲ v−3(s), where we have

used that t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case since∣∣∣ pr√
1 − E2

−
(6M

r
− 1

) 3
2
∣∣∣ ≲ √

H ≲ v−3(s),

where we have used a lower bound for ω2
√
3M , and the 1

2 -Hölder continuity of the square root.
The region {r ≤ 6M, H < 0}. Without loss of generality, we consider the case when r(0) = 5M .

Integrating the geodesic equation (98), we have

t̄ =

∫ rH

5M

dr

(( 6M
r − 1)3 − (−H)

ω )
1
2

=
1

(−H)
1
2

∫ rH

5M

w
1
2 dr

( ω
−H ( 6M

r − 1)3 − 1)
1
2

,

for all t̄. By using the change variables

r 7→ r̃(r) = 6M +
1

(−H)
1
3

r − 6M

(r2 − 6Mr + 12M2)
1
3

,

we have

1

(−H)
1
2

∫ rH

5M

dr

( ω
−H ( 6M

r − 1)3 − 1)
1
2

=
1

(−H)
1
6

∫ r̃(rH)

r̃(5M)

ω
1
2

((6M − r̃)3 − 1)
1
2

dr

dr̃
dr̃ ≲

1

(−H)
1
6

.

As a result, we obtain
√
−H ≲ v−3, where we have used that t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We

conclude this case since ∣∣∣ pr√
1 − E2

−
(6M

r
− 1

) 3
2
∣∣∣ ≲ (−H)

1
2 ≲ v−3(s),

where we have used a lower bound for ω2
√
3M , and the 1

2 -Hölder continuity of the square root.
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Analogous estimates hold in the regime where γ is ingoing. For geodesics with a turning point at rH , we
put together the estimates when γ is outgoing and ingoing in the regions considered above. The same decay
estimates hold with respect to the time coordinate u. For this, we use that s ≳ u(s) since γ([0, a]) ⊂ {r >
5M}. □

Next, we study concentration estimates on the stable manifolds for geodesics with angular momentum
ℓ ∼ 2

√
3M , when ℓ is strictly less than 2

√
3M . Let us establish uniform estimates for the geodesic flow as

ℓ → 2
√

3M . For this purpose, we will perform estimates for all ℓ < 2
√

3M near a suitably chosen energy
level {E = E−(ℓ)}.

Given ℓ ∈ [0, 2
√

3M ], we denote by rE the radial value where orbits with angular momentum ℓ and particle
energy E ∈ (0, 1) turn, i.e. pr = 0. In other words, the real value rE ∈ (2M,∞) satisfies that E2 = Vℓ(rE)

for every E ∈ (0, 1). The map E 7→ rE is well-defined since d
drVℓ ≥ 0 when ℓ ∈ [0, 2

√
3M ].

Let us define the function ΨE : [2M,∞) → R given by

ΨE(r) := r3
(
Vℓ(rE) − Vℓ(r)

)
.

By definition, we have ΨE(rE) = 0 for every E ∈ (0, 1). Furthermore, we have that ΨE(r) = r3(pr)2 by the
mass-shell relation.

Proposition 6.1.4. Let ℓ ∈ (4
√

2
3M, 2

√
3M ]. The unique continuous function E− : (4

√
2
3M, 2

√
3M ] →

[0,∞) such that rE−(ℓ) is a double root of ΨE−(ℓ)(r) and E−(2
√

3M) = 2
√
2

3 , is given by

E−(ℓ) =
(

1 − 2M

r3−(ℓ)

(
r2−(ℓ) − ℓ2

2M
r−(ℓ) + ℓ2

)) 1
2

, r−(ℓ) :=
3ℓ2

8M

(
1 +

√
1 − 32M2

3ℓ2

)
.

Moreover, the conserved quantity Hℓ(E) := 2M
1−E2 − 2M

1−E2
−(ℓ)

satisfies

(102) Hℓ(E) =
r3

r2 − ℓ2

2M r + ℓ2

[ (pr)2

1 − E2
+
r − r−
r3

(
(r − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

))]
.

Proof. By the mass-shell relation, we have

(pr)2

E2 − 1
− 1 =

2M

E2 − 1
· 1

r
− ℓ2

E2 − 1
· r − 2M

r3
=

2M

E2 − 1
·
r2 − ℓ2

2M r + ℓ2

r3
.

So, the radial value rE , where orbits with particle energy E ∈ (0, 1) turn, satisfies

(103) E2 = 1 − 2M

r3E

(
r2E − ℓ2

2M
rE + ℓ2

)
.

Let us consider the cubic polynomial hE(r) given by

hE(r) := − 1

2M

r3E
r2E − ℓ2

2M rE + ℓ2
ΨE(r) = r3 − r3E

r2E − ℓ2

2M rE + ℓ2

(
r2 − ℓ2

2M
r + ℓ2

)
.

We write hE(r) as a polynomial in r − rE by

hE(r) =
1

r2E − ℓ2

2M rE + ℓ2

((
r2E − ℓ2

2M
rE + ℓ2

)
r3 − r3E

(
r2 − ℓ2

2M
r + ℓ2

))
=

1

r2E − ℓ2

2M rE + ℓ2

((
r2E − ℓ2

2M
rE + ℓ2

)
(r3 − r3E) + r3E(rE − r)

(
r − ℓ2

2M
+ rE

))
= (r − rE)

(
(r − rE)2 + 3rrE − r3E

r2E − ℓ2

2M rE + ℓ2

(
r − ℓ2

2M
+ rE

))
.(104)
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The condition d2

dr2 ΨE−(ℓ)(rE−(ℓ)) = 0 holds if and only if h′′E−(ℓ)(rE−(ℓ)) = 0. The latter property is satisfied

when the linear term in the second factor of (104) vanishes. In other words, we require that

(105) r2E−(ℓ) −
3ℓ2

4M
rE−(ℓ) +

3ℓ2

2
= 0.

for every ℓ ∈ (4
√

2
3M, 2

√
3M ]. By the condition E−(2

√
3M) = 2

√
2

3 , we note that rE−(2
√
3M) = 6M . Thus,

we choose the regular solution of (105) given by

r−(ℓ) :=
3ℓ2

8M

(
1 +

√
1 − 32M2

3ℓ2

)
.

The unique continuous function E−(ℓ) satisfying the conditions in the statement is obtained by plugging
r−(ℓ) in (103). Finally, the mass-shell relation (86) can be written in terms of Hℓ(E) as

Hℓ(E) =
r3

r2 − ℓ2

2M r + ℓ2

[ (pr)2

1 − E2
+
r − r−(ℓ)

r3

(
(r − r−(ℓ))2 +

r3−(ℓ)

r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2

( ℓ2

2M
− r−(ℓ)

))]
.

□

For our purposes, we will show that the coefficient b(ℓ) ∈ R in the last parenthesis of (102), given by

b(ℓ) :=
r3−(ℓ)

r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2

( ℓ2

2M
− r−(ℓ)

)
,

is positive for every ℓ ∼ 2
√

3M with ℓ ̸= 2
√

3M . We begin proving an elementary lemma about the derivatives
of the function r−(ℓ).

Lemma 6.1.5. The first and second order derivatives of r− : (4
√

2
3M, 2

√
3M ] → (2M,∞) are given by

dr−
dℓ

=
4M

3ℓ3
1√

1 − 32M2

3ℓ2

r2−(ℓ),

d2r−
dℓ2

= −4M

ℓ4
1√

1 − 32M2

3ℓ2

r2−(ℓ) − 128M3

9ℓ6
1

(1 − 32M2

3ℓ2 )
3
2

r2−(ℓ) +
32M2

9ℓ6
1

1 − 32M2

3ℓ2

r3−(ℓ).

Proof. We first compute the derivative

dr−
dℓ

=
3ℓ

4M

1√
1 − 32M2

3ℓ2

(√
1 − 32M2

3ℓ2
+

(
1 − 32M2

3ℓ2

)
+

16M2

3ℓ2

)

=
3ℓ

8M

1√
1 − 32M2

3ℓ2

(
1 +

√
1 − 32M2

3ℓ2

)2

=
4M

3ℓ3
1√

1 − 32M2

3ℓ2

r2−(ℓ),

where we used in the last equality the definition of r−(ℓ). Next, we compute the second order derivative

d2r−
dℓ2

= −4M

ℓ4
1√

1 − 32M2

3ℓ2

r2−(ℓ) − 128M3

9ℓ6
1

(1 − 32M2

3ℓ2 )
3
2

r2−(ℓ) +
4M

3ℓ3
1√

1 − 32M2

3ℓ2

2r−(ℓ)
dr−
dℓ

= −4M

ℓ4
1√

1 − 32M2

3ℓ2

r2−(ℓ) − 128M3

9ℓ6
1

(1 − 32M2

3ℓ2 )
3
2

r2−(ℓ) +
32M2

9ℓ6
1

1 − 32M2

3ℓ2

r3−(ℓ).

□
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Let us set the function c : (2
√

2M, 2
√

3M ] → R by

c(ℓ) :=
ℓ2

2M
− r−(ℓ).

By definition of b(ℓ), we have that

b(ℓ) =
c(ℓ)r3−(ℓ)

r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2
.

As a result, the coefficient b(ℓ) is positive for ℓ ∼ 2
√

3M with ℓ ̸= 2
√

3M , if and only if c(ℓ) is positive for

ℓ ∼ 2
√

3M with ℓ ̸= 2
√

3M . We observe that c(2
√

3M) = 0.

Lemma 6.1.6. The function c(ℓ) has a local minimum at ℓ = 2
√

3M . In particular, the functions c(ℓ) and

b(ℓ) are non-negative in an open interval whose right end point is open at ℓ = 2
√

3M .

Proof. By definition of r−(ℓ), we have c(2
√

3M) = 0. By computing the first and second order derivatives

of c(ℓ), we have dc
dℓ (2

√
3M) = 0 and d2c

dℓ2 (2
√

3M) = 8
M > 0. Thus, the function c(ℓ) has a local minimum at

ℓ = 2
√

3M . In particular, we have c(ℓ) ≥ 0 in an open interval whose right end point is open at ℓ = 2
√

3M .
Furthermore, we note that

r3−(ℓ)

r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2

∣∣∣
ℓ=2

√
3M

= 18M > 0.

As a result, the function b(ℓ) is non-negative in an open interval whose right end point is open at ℓ = 2
√

3M ,
since

b(ℓ) =
r3−(ℓ)

r2−(ℓ) − ℓ2

2M r−(ℓ) + ℓ2
c(ℓ) > 0.

□

We can finally show uniform concentration estimates as ℓ→ 2
√

3M .

Proposition 6.1.7. For every geodesic γx,p : [0, a] → {5M < r < 7M} with angular momentum ℓ ∈
(2
√

2M, 2
√

3M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ ≲ 1

v6(s)
, ∀s ∈ [0, a].

Moreover, for all s ∈ [0, a], we have

|pr(s)| ≲ 1

v3(s)
, if r(s) ≥ r−(ℓ),(106) ∣∣∣ pr√

1 − E2
− (r− − r)

1
2

r
3
2

(
(r − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

)) 1
2
∣∣∣ ≲ 1

v3(s)
, if r(s) ≤ r−(ℓ).(107)

The same decay estimates hold with respect to the time coordinate u.

Proof. By Proposition 6.1.4, the mass-shell relation (86) can be written as

(108) Hℓ = ωℓ(r)
[ (pr)2

1 − E2
+
r − r−
r3

(
(r − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

))]
,

where ωℓ(r) = r3(r2 − ℓ2

2M r+ ℓ2)−1. For simplicity, we write below H and ω, for Hℓ and ωℓ, respectively. By
the form of the radial potential Vℓ, we define rH as the unique real value such that

H =
rH − r−

r2H − ℓ2

2M rH + ℓ2

(
(rH − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

))
.

The radial momentum coordinate pr vanishes at r = rH by (108). Moreover, one can show that rH ∈ {5M <
r < 7M}.
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We suppose first that γ is an outgoing geodesic. We will consider three different cases: geodesics in the
region {r ≥ r−}, in the region {r ≤ r−, H > 0}, or in the region {r ≤ r−, H < 0}.

The region {r ≥ r−(ℓ)}. We first note that orbits in {r ≥ r−} satisfy H > 0 by definition of H. Without
loss of generality, we consider the case when r(0) = r−(ℓ). Integrating the geodesic equation (108), we have

t̄ =

∫ rH

r−(ℓ)

dr

(H
ω − 1

r3 (r − r−)3 − r−r−
r3 ( ℓ2

2M − r−)
r3−

r2−− ℓ2

2M r−+ℓ2
)

1
2

,

since the geodesic γ is outgoing. Let us set the function r̃ℓ : [2M,∞) → R given by

(109) r̃ℓ(r) := r−(ℓ) +
1

b
1
2 (ℓ)

(r − r−(ℓ)), b(ℓ) =
( ℓ2

2M
− r−

) r3−

r2− − ℓ2

2M r− + ℓ2
.

The function r̃ℓ(r) is well-defined on [2M,∞) since ℓ ∈ (2
√

2M, 2
√

3M). In the rest of the proof, we denote

r̃ℓ simply as r̃. We note that dr̃ℓ
dr = b−

1
2 (ℓ) > 0. By using the change of variables r 7→ r̃ℓ(r), we have

t̄ =

∫ rH

r−(ℓ)

dr

(H
ω − r−r−

r3 ((r − r−)2 + b(ℓ)))
1
2

= b
1
2 (ℓ)

∫ r̃(rH)

r−(ℓ)

( H

ω(r̃)
− b

3
2 (ℓ)(r̃ − r−)

(r− + b
1
2 (ℓ)(r̃ − r−))3

(
(r̃ − r−)2 + 1

))− 1
2

dr̃

= b−
1
4 (ℓ)

∫ r̃(rH)

r−(ℓ)

( H

b
3
2 (ℓ)

− (r̃ − r−)

(r− + b
1
2 (ℓ)(r̃ − r−))3

((r̃ − r−)2 + 1)ω
)− 1

2

ω
1
2 dr̃

≲ b−
1
4 (ℓ),(110)

where the last inequality holds for |H| ≲ b
3
2 (ℓ). Thus, we have t̄ ≲ b−

1
4 (ℓ) ≲ H− 1

6 , so we obtain
√
H ≲ v−3.

We have used that t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case by

|pr(s)| ≲
√
H ≲ v−3(s),

by the positivity of the second term in the definition of H in (108).
The region {r ≤ r−(ℓ), H > 0}. Without loss of generality, we consider the case when r(0) = 5M .

Integrating the geodesic equation (108), we have

t̄ =

∫ rH

5M

dr

(H
ω − 1

r3 (r − r−)3 − r−r−
r3 ( ℓ2

2M − r−)
r3−

r2−− ℓ2

2M r−+ℓ2
)

1
2

.

Furthermore, we have

t̄ ≤
∫ rH

5M

dr

(H
ω + 1

r3 (r− − r)3)
1
2

,

since r−(ℓ) ≥ r. By the estimate (101) in Proposition 6.1.3, we obtain
√
H ≲ v−3, where we have used that

t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case since∣∣∣ pr√
1 − E2

−
√
r− − r

r
3
2

(
(r − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

)) 1
2
∣∣∣ ≲ √

H ≲ v−3(s),

where we have used a lower bound for ωℓ, and the 1
2 -Hölder continuity of the square root.

The region {r ≤ r−(ℓ), H < 0}. Without loss of generality, we consider the case when r(0) = 5M .
Integrating the geodesic equation, we have

t̄ =

∫ rH

5M

dr

(− (−H)
ω − 1

r3 (r − r−)3 − r−r−
r3 ( ℓ2

2M − r−)
r3−

r2−− ℓ2

2M r−+ℓ2
)

1
2

.
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Furthermore, we have

t̄ ≤
∫ rH

5M

dr

(− (−H)
ω + 1

r3 (r− − r)3)
1
2

,

since r−(ℓ) ≥ r. By the estimate (101) in Proposition 6.1.3, we obtain
√
−H ≲ v−3, where we have used

that t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case since∣∣∣ pr√
1 − E2

−
√
r− − r

r
3
2

(
(r − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

)) 1
2
∣∣∣ ≲ √

−H ≲ v−3(s),

where we have used a lower bound for ω, and the 1
2 -Hölder continuity of the square root.

Analogous estimates hold in the regime where γ is ingoing. For geodesics with a turning point at rH , we
put together the estimates when γ is outgoing and ingoing in the regions considered above. The same decay
estimates hold with respect to the time coordinate u. For this, we use that s ≳ u(s) since γ([0, a]) ⊂ {r >
5M}. □

Remark 6.1.2. The decay rate t−3 in Proposition 6.2.2 holds, because of the cubic potential (1 − 6M
r )3 in

the geodesic equation (71). More generally, for a radial potential of the form (1 − rc
r )n with rc > 0, one can

show concentration estimates with the decay rate t−
n

n−2 .

6.2. The region Dbd. In this region, the radial potential Vℓ(r) has critical points at r = r±(ℓ), where Vℓ(r)
has a local maximum at r−(ℓ), and a local minimum at r+(ℓ). Moreover, the potential Vℓ(r) has a maximum
at infinity where limr→∞ Vℓ(r) = 1. We remark that Vℓ(r−(ℓ)) < 1, so the fixed point (r = r−(ℓ), pr = 0)
of the radial flow is a homoclinic point. One can easily show that there are three types of trapping in Dbd:
parabolic trapping at infinity, degenerate trapping at ISCO, and unstable trapping.

6.2.1. The subregion E ∼ 1. Let us study concentration estimates on the parabolic manifolds at the energy
level {E = 1}. Parabolic trapping at infinity holds for all ℓ ∈ [2

√
3M, 4M ] in Dbd. We will estimate the

radial flow in a uniform neighbourhood of the parabolic manifolds.

Proposition 6.2.1. Let R > r0 > 16M . For every geodesic γx,p : [0, a] → {r > r0} with angular momentum

ℓ ∈ (2
√

3M, 4M), particle energy E ∈ [E−(ℓ), 1), and initial data (x, p) ∈ {16M < r < R}, we have

|1 − E2| ≲ 1

v
2
3 (s)

, ∀s ∈ [0, a].

Moreover, for all s ∈ [0, a], we have∣∣∣√2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2 − pr

∣∣∣ ≲ 1

v
1
3 (s)

, if pr ≥ 0,

∣∣∣√2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2

+ pr
∣∣∣ ≲ 1

v
1
3 (s)

, if pr ≤ 0.

The same decay estimates hold with respect to the time coordinate u.

Proof. The proof of this proposition is similar to the proof of Proposition 6.1.2. Here, we consider R > r0 >
16M instead, so that we obtain uniform bounds for dr̃ℓ

dr after performing the change of variables r 7→ r̃ℓ(r).
Moreover, we consider geodesics with initial data (x, p) ∈ {16M < r < R} to avoid making any reference to
the flow near {r = r−(ℓ)} for ℓ ∼ 4M . The rest of the proof follows without further changes. □

6.2.2. The subregion E ∼ 2
√
2

3 with ℓ ∼ 2
√

3M . Let us study concentration estimates on the stable manifolds
associated to the degenerate trapping at ISCO in the region Dbd. We will estimate the radial flow in a
uniform neighbourhood of the sphere S−(2

√
3M). The set {ℓ = 2

√
3M} is located at the boundary of Dbd.
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Proposition 6.2.2. For every geodesic γx,p : [0, a] → {5M < r < 7M} with angular momentum ℓ ∈
(2
√

3M, 4M) and particle energy E ∈ ( 2
√
2

3 , 21
√
2

30 ), we have∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ ≲ 1

v6(s)
, ∀s ∈ [0, a].

Moreover, for all s ∈ [0, a], we have

|pr(s)| ≲ v−3(s), if r ∈ [−a(ℓ),∞),∣∣∣ pr√
1 − E2

−
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ v−3(s), if pr ≥ 0 and r ∈ [r−(ℓ),−a(ℓ)],∣∣∣ pr√
1 − E2

+
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ v−3(s), if pr ≤ 0 and r ∈ (5M,−a(ℓ)].

The same decay estimates hold with respect to the time coordinate u.

Proof. By Proposition 5.1.6, the mass-shell relation (86) can be written as

(111) Hℓ(E) :=
2M

1 − E2
− 2M

1 − E2
−(ℓ)

= ωℓ(r)
( (pr)2

1 − E2
+

(
1 +

a(ℓ)

r

)(
1 − r−(ℓ)

r

)2)
,

where ωℓ(r) := r3(r2 − ℓ2

2M r + ℓ2)−1. For simplicity, we write below H and ω, for Hℓ and ωℓ, respectively.
By the form of the radial potential Vℓ, we define rH as the unique real value such that

H =
(rH + a(ℓ))(rH − r−(ℓ))

r2H − ℓ2

2M rH + ℓ2
.

The radial momentum coordinate pr vanishes at r = rH by (111). Moreover, one can show that rH ∈ {5M <
r < 7M}.

We suppose first that γ is an outgoing geodesic. We will consider three different cases: geodesics in the
region {r ≥ r−(ℓ)}, in the region {r ≤ r−(ℓ), H > 0}, or in the region {r ≤ r−(ℓ), H < 0}.

The region {r ≥ r−(ℓ)}. We first note that orbits in {r ≥ r−(ℓ)}∩Dbd satisfy H ≥ 0. In general, orbits in
{r ≥ r−(ℓ)} can also have H < 0, however, this only occurs in the region P \ D of the mass-shell. Without
loss of generality, we consider the case where r(0) = r−(ℓ). Integrating the geodesic equation (111), we have

t̄ =

∫ rH

r−(ℓ)

dr

(H
ω − 1

r3 (r + a(ℓ))(r − r−)2)
1
2

,(112)

since the geodesic γ is outgoing. We note that

(113) (r + a(ℓ))(r − r−(ℓ))2 = (r − r−(ℓ))3 − (−a(ℓ) − r−(ℓ))(r − r−(ℓ))2,

where −a(ℓ) − r−(ℓ) > 0 for ℓ ∈ (2
√

3M, 2
√

3M + 1
2M ]. Thus, we can bound

t̄ =

∫ rH

r−(ℓ)

dr

(H
ω − 1

r3 (r − r−(ℓ))3 + 1
r3 (−a(ℓ) − r−(ℓ))(r − r−(ℓ))2)

1
2

≤
∫ rH

r−(ℓ)

dr

(H
ω − 1

r3 (r − r−(ℓ))3)
1
2

.

By using the estimate (101) performed in Proposition 6.1.3, we obtain that
√
H ≲ v−3. We have used that

t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. Thus, for every r ≥ −a(ℓ), we have

|pr(s)| ≲
√
H ≲ v−3(s),
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by the positivity of the second term in the definition of H in (111). Otherwise, if r ≤ −a(ℓ), then∣∣∣ pr√
1 − E2

−
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ √
H ≲ v−3(s), if pr > 0,∣∣∣ pr√

1 − E2
+
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ √
H ≲ v−3(s), if pr < 0,

where we have used a lower bound for ω, and the 1
2 -Hölder continuity of the square root.

The region {r ≤ r−(ℓ), H > 0}. Without loss of generality, we consider the case when r(a) = r−(ℓ).
Integrating the geodesic equation (111) and using (113), we have

t̄ ≤
∫ r−(ℓ)

5M

dr

(H
ω − 1

r3 (r − r−(ℓ))3)
1
2

.

By using the estimate (101) performed in Proposition 6.1.3, we obtain that
√
H ≲ v−3. We have used that

t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case since∣∣∣ pr√
1 − E2

+
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ √
H ≲ v−3(s),

where we have used a lower bound for ωℓ, and the 1
2 -Hölder continuity of the square root.

The region {r ≤ r−(ℓ), H < 0}. Without loss of generality, we consider the case when r(a) = r−(ℓ).
Integrating the geodesic equation (111) and using (113), we have

t̄ ≤
∫ r−(ℓ)

5M

dr

(− (−H)
ω − 1

r3 (r − r−(ℓ))3)
1
2

.

By using the estimate (101) performed in Proposition 6.1.3, we obtain that
√
−H ≲ v−3. We have used that

t̄ ≳ v(s) since γ([0, a]) ⊂ {5M < r < 7M}. We conclude this case since∣∣∣ pr√
1 − E2

+
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ √
−H ≲ v−3(s),

where we have used a lower bound for ω, and the 1
2 -Hölder continuity of the square root.

Analogous estimates hold in the regime where γ is ingoing. For geodesics with a turning point at r = rH ,
we put together the estimates when γ is outgoing and ingoing. The same decay estimates hold with respect
to the time coordinate u. For this, we use that s ≳ u(s) since γ([0, a]) ⊂ {r > 5M}. □

6.2.3. The subregion E ∼ E−(ℓ). Let us study concentration estimates on the stable manifolds associated

to the unstable trapping at the energy level {E(x, p) = E−(ℓ)} for ℓ ∈ (2
√

3M, 4M). We will estimate the
radial flow in a neighbourhood of the sphere S−(ℓ).

Proposition 6.2.3. Let δ > 0. There exists ϵ ∈ (0, 12M) such that for every geodesic γx,p : [0, a] → {|r −
r−(ℓ)| < ϵ} with angular momentum ℓ ∈ (2

√
3M + ϵ, 4M) and particle energy E ∈ (E−(ℓ)− ϵ, E−(ℓ) + ϵ), we

have

(114) |pr(s) − pr,+ℓ (r(s))| ≲ 1

exp((λ
1
2 (ℓ) − δ)t(s))

,
∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ ≲ 1

exp((λ
1
2 (ℓ) − δ)t(s))

for all s ∈ [0, a].

Proof. We first note that the Lyapunov exponents of (r−(ℓ), 0) satisfy

λ
1
2 (ℓ) ≥ λ

1
2 (2

√
3M + ϵ) > 0,

by the monotonicity property of λ
1
2 (ℓ) in Proposition 5.1.5. We set ϵ > 0 small enough so that∣∣∣λ 1

2 (ℓ) − (1 − E2)
1
2

E

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)

∣∣∣ ≤ δ,
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for all (x, p) ∈ {|r − r−(ℓ)| ≤ ϵ} ∩ {|E − E−(ℓ)| ≤ ϵ}. Next, we integrate the derivative along the geodesic
flow of φℓ

− by

(115) φℓ
−

(
x(t(s)), p(t(s))

)
= φℓ

−(x, p) exp
(
− (1 − E2)

1
2

E

∫ t(s)

0

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)
dt
)
,

where (x(0) = x, p(0) = p). As a result, we have the bound

|φℓ
−| ≲ exp

(
− (1 − E2)

1
2

E

∫ t(s)

0

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)
dt
)
≲ exp

(
−

(
λ

1
2 (ℓ) − δ

)
t(s)

)
,

so the momentum coordinate pr satisfies

|pr(s) − pr,+ℓ (r(s))| ≲
∣∣∣φℓ

−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−

(
λ

1
2 (ℓ) − δ

)
t(s)

)
.

Finally, we note that φℓ
+ is bounded in the region {|r − r−(ℓ)| < ϵ} ∩ {|E − E−(ℓ)| < ϵ}. Thus,∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ =
∣∣∣φℓ

+φ
ℓ
−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−

(
λ

1
2 (ℓ) − δ

)
t(s)

)
.

□

Similarly, we show concentration estimates on the stable manifolds associated to the unstable trapping at
the energy level {E = 1} for ℓ = 4M . In this case, we consider the defining functions ψ4M

± for the stable

manifolds. We treat this case apart because the defining functions φℓ
± degenerate at E = 1.

Proposition 6.2.4. Let δ > 0. There exists ϵ > 0 such that for every geodesic γx,p : [0, a] → {|r− 4M | < ϵ}
with angular momentum ℓ = 4M and particle energy E ∈ (1 − ϵ, 1 + ϵ), we have

(116) |pr(s) − pr,+ℓ (r(s))| ≲ 1

exp(( 1
8
√
2M

− δ)t(s))
, |E2 − 1| ≲ 1

exp(( 1
8
√
2M

− δ)t(s))

for all s ∈ [0, a].

Proof. We set ϵ > 0 small enough so that∣∣∣ 1

8
√

2M
−

√
2M

2E

1

r
3
2

(
1 − 12M

r

)(
1 − 2M

r

)∣∣∣ ≤ δ,

for all (x, p) ∈ {|r − 4M | ≤ ϵ} ∩ {|E − E−(ℓ)| < ϵ}. We integrate the derivative along the geodesic flow of
ψ4M
+ by

ψ4M
+

(
x(t(s)), p(t(s))

)
= ψ4M

+ (x, p) exp
(
− 1

E

∫ t(s)

0

√
2M

2

1

r
3
2

(
1 − 12M

r

)(
1 − 2M

r

)
dt
)
,

where (x(0) = x, p(0) = p). As a result, we have

|ψ4M
+ | ≲ exp

(
− 1

E

∫ t(s)

0

√
2M

2

1

r
3
2

(
1 − 12M

r

)(
1 − 2M

r

)
dt
)
≲ exp

(
−

( 1

8
√

2M
− δ

)
t(s)

)
,

so the momentum coordinate pr satisfies

|pr(s) − pr,+ℓ (r(s))| ≲
∣∣∣ψ4M

+

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−

( 1

8
√

2M
− δ

)
t(s)

)
.

Finally, we note that ψ4M
− is bounded in the region {|r − r−(ℓ)| < ϵ} ∩ {|E − E−(ℓ)| < ϵ}. Thus,∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ =
∣∣∣ψ4M

+ ψ4M
−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−
( 1

8
√

2M
− δ

)
t(s)

)
.

□
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Remark 6.2.1. We observe that Propositions 6.2.3 and 6.2.4, could have been obtained by using the quanti-
tative estimates for the geodesic flow that follow from the proof of the stable manifold theorem. See [KH95,
Theorem 17.4.3] for more details about the standard proof of the stable manifold theorem, based on the graph
transform over the stable and unstable subspaces defined by the linearised flow. Instead, we have performed
a proof that makes use of the explicit defining functions of the stable manifolds associated to the trapped
set Γ of Schwarzschild. This strategy gives more information about the concentration of the geodesic flow on
the unstable manifold in the specific setup of Schwarzschild spacetime.

For our purposes, we will require concentration estimates near the whole homoclinic orbits at the energy
level {E = E−(ℓ)}. The following estimates do not only consider geodesics in a neighbourhood of the sphere
S−(ℓ) as in Propositions 6.2.3 and 6.2.4.

Proposition 6.2.5. Let R > 2M . For every geodesic γx,p : [0, a] → {5M < r < R} with angular momentum

ℓ ∈ (2
√

3M, 4M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ ≲ 1

v6(s)
, ∀s ∈ [0, a].

Moreover, for all s ∈ [0, a], we have

|pr(s)| ≲ v−3(s), if r ∈ [−a(ℓ),∞),∣∣∣ pr√
1 − E2

−
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ v−3(s), if pr ≥ 0 and r ∈ [r−(ℓ),−a(ℓ)],∣∣∣ pr√
1 − E2

+
(
− 1 − a(ℓ)

r

) 1
2
(

1 − r−(ℓ)

r

)∣∣∣ ≲ v−3(s), if pr ≤ 0 and r ∈ (5M,−a(ℓ)].

The same decay estimates hold with respect to the time coordinate u.

Proof. The proof of this proposition is similar to the proof of Proposition 6.2.2. We consider here geodesics
with a larger range of possible angular momentum values. By the assumption that the particle energy E

is in ( 2
3 ,

21
√
2

30 ), we only consider unstable trapping in a range (2
√

3M,L1) with L1 < 4M . Because of this
property, the function −a(ℓ) ≥ 2M satisfies the uniform bound −a(ℓ) ≤ A for a constant A > 2M . As
a result, the corresponding homoclinic orbits are contained in the bounded region {−a(ℓ) ≤ A}. By these
considerations, the proof can be adapted from the arguments in Proposition 6.2.2. □

Remark 6.2.2. We remark that Proposition 6.2.5 also applies to geodesics with angular momentum ℓ ∈
(2
√

3M, 4M) and particle energy E ∈ ( 21
√
2

30 , 1) in the bounded region. We also note that this result does
not apply in the far-away region, because the homoclinic orbits become larger and larger as ℓ→ 4M , so the
constant in the RHS of the estimates degenerates.

6.3. The region Dhigh. In this region, the radial potential Vℓ(r) has critical points at r = r±(ℓ), where Vℓ(r)
has a local maximum at r−(ℓ), and a local minimum at r+(ℓ). Moreover, the potential Vℓ(r) has a maximum
at infinity where limr→∞ Vℓ(r) = 1. We remark that Vℓ(r−(ℓ)) > 1, so the fixed point (r = r−(ℓ), pr = 0)
of the radial flow is not a homoclinic point. One can easily show that there is only one type of trapping in
Dhigh: unstable trapping.

6.3.1. The subregion E ∼ E−(ℓ). Let us study concentration estimates on the stable manifolds associated to
the unstable trapping effect at the energy level {E(x, p) = E−(ℓ)} for ℓ ∈ (4M,∞). We will estimate the
radial flow in a neighbourhood of the spheres S−(ℓ) for all ℓ ≥ ℓ0 > 4M for a fixed ℓ0 ∈ R.

Proposition 6.3.1. Let ℓ0 > 4M . There exists ϵ > 0 such that for every geodesic γx,p : [0, a] → {|r−r−(ℓ)| <
ϵ} with angular momentum ℓ ≥ ℓ0 and particle energy E ∈ (E−(ℓ) − ϵ, E−(ℓ) + ϵ), we have

(117) |pr(s) − pr,+ℓ (r(s))| ≲ 1

exp( 1
8
√
2M

t(s))
,

∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ ≲ 1

exp( 1
8
√
2M

t(s))
,

for all s ∈ [0, a].



54 RENATO VELOZO RUIZ

Proof. We first note that the Lyapunov exponents of the fixed points (r−(ℓ), 0) satisfy

(118) λ
1
2 (ℓ) ≥ λ

1
2 (ℓ0) ≥ λ

1
2 (4M) =

1

8
√

2M
,

by the monotonicity property of λ
1
2 (ℓ) in Proposition 5.1.5. We set ϵ > 0 small enough so that∣∣∣λ 1

2 (ℓ) − (1 − E2)
1
2

E

(r+(ℓ) − r)(r − 2M)

2r
1
2 (−a(ℓ) − r)

1
2 (r2 − ℓ2

2M r + ℓ2)

∣∣∣ ≤ 1

2

(
λ

1
2 (ℓ0) − 1

8
√

2M

)
=: d(ℓ0),

for all (x, p) ∈ {|r− r−(ℓ)| ≤ ϵ}∩ {|E(x, p)−E−(ℓ)| < ϵ}. Next, we integrate as in (115) the derivative along
the geodesic flow of φℓ

−. As a result, the momentum coordinate pr satisfies

|pr(s) − pr,+ℓ (r(s))| ≲
∣∣∣φℓ

−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−

(
λ

1
2 (ℓ) − d(ℓ0)

)
t(s)

)
≲ exp

(
− t(s)

8
√

2M

)
,

where we have used (118) in the last estimate. Finally, we note that φℓ
+ is bounded above in the domain

{|r − r−(ℓ)| < ϵ} ∩ {|E − E−(ℓ)| < ϵ}. Thus,∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ =
∣∣∣φℓ

+φ
ℓ
−

(
x(t(s)), p(t(s))

)∣∣∣ ≲ exp
(
−

(
λ

1
2 (ℓ) − d(ℓ0)

)
t(s)

)
≲ exp

(
− t(s)

8
√

2M

)
,

where we have used again (118). □

7. Decay in time for dispersive Vlasov fields on Schwarzschild

In this section, we obtain the decay estimates for the energy-momentum tensor Tµν stated in Theorem
3.1, Theorem 3.2, and Theorem 3.3. The proofs of the main results are based on the concentration estimates
previously obtained on the stable manifolds associated unstable trapping, degenerate trapping at ISCO,
and parabolic trapping at infinity. The estimates obtained in the previous section control the flow in a
neighbourhood of the stable manifolds. In this section, we also estimate the flow in the rest of the mass-shell.
We recall that the initial distribution function f0 is assumed to be compactly supported.

7.1. A priori estimates in the near-horizon region. In this subsection, we show that we can assume
without loss of generality that the initial distribution function f0 is supported away of H+.

Lemma 7.1.1. There exists r0 > 2M and V0 > 0 such that for every geodesic γx,p : [0, a] → {r < r0} with
(x, p) ∈ supp(f0), we have v(s) ≤ V0 for all s ∈ [0, a].

Proof. By the compact support assumption of f0 in the momentum variables, there exist r0 > 2M and an
advanced time V0 > 0, such that every geodesic γx,p crosses H+ in {v ≤ V0} for (x, p) ∈ supp(f0) ∩ {r ≤ r0}.
This property holds because the momentum p is strictly away of the null generator of H+ in TxE for all
(x, p) ∈ supp(f0) ∩ {r = 2M}. We are using here the compact support of f0. □

Remark 7.1.1. Lemma 7.1.1 only holds for massive Vlasov fields f for which the initial data f0 are compactly
supported in the subset Σ of the mass-shell over the initial hypersurface.

Lemma 7.1.2. There exist constants L1 ≥ 0, and E1 ≥ E0 > 0 such that for all (x, p) ∈ supp(f0) ∩ {r ≥ r0},
we have ℓ(x, p) ∈ [0, L1], and E(x, p) ∈ [E0, E1].

Proof. By the compact support of the initial distribution function f0, there exist E1 > 0 and L1 > 0 such
that E(x, p) ∈ [0, E1] and ℓ(x, p) ∈ [0, L1] for all (x, p) ∈ supp(f0). By the mass-shell relation, the particle
energy E satisfies

∀(x, p) ∈ supp(f0), E2(x, p) ≥
(

1 − 2M

r

)(
1 +

ℓ2

r2

)
≥ 1 − 2M

r
≥ 1 − 2M

r0
=: E2

0 > 0.

□

Next, we upgrade Lemma 7.1.1 by removing the assumption that (x, p) ∈ supp(f0).
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Corollary 7.1.3. There exist r0 > 2M and V1 > 0 such that for every geodesic γx,p : [0, a] → {r < r0} ∩
supp(f) with particle energy E ≥ E0, we have v(s) ≤ V1 for all s ∈ [0, a].

Proof. By Lemma 7.1.1, we have |ℓ(x, p)| ≤ L1 for all (x, p) ∈ supp(f). As a result, we have

(119) 4Ω2pupv =
ℓ2

r2
+ 1 ≤ L2

1

4M2
+ 1.

Furthermore, the normalised momentum coordinate Ω2pu satisfies

Ω2pu = E − Ω2pv ≥ E0 − Ω2pv ≥ E0 − Ω,

where we have used Lemma 7.1.2 in the first estimate, and (40) in the second one. By setting r0 − 2M small
enough, we obtain that Ω2pu is strictly away from zero, so pv can be bounded above by using (119). Thus,
for all (x, p) ∈ supp(f) ∩ {r = 2M}, the momentum p is strictly away from the null generator of H+. We
are using here the compact support assumption on f0. From this, the result follows. □

In the rest of the section, we proceed to show the main results of the article

7.2. Decay for Vlasov fields compactly supported on D0. In this subsection, we prove time decay for
the energy-momentum tensor Tµν of a Vlasov field f with initial data compactly supported on D0. We note
that there exist constants E1 > E0 > 1 and L1 ≥ 0, such that E(x, p) ∈ [E0, E1] and ℓ(x, p) ∈ [0, L1] for
all (x, p) ∈ supp(f0). This properties hold by the compact support assumption on the initial distribution
function f0.

The proof of the decay estimates of the energy-momentum tensor Tµν follow by proving decay of the
momentum support of the distribution f . In this subsection, we will show the decay of the momentum support
by proving concentration estimates on the stable manifolds associated to the energy level {E = E−(ℓ)} for
ℓ ≥ 4M . We obtain concentration estimates in terms of the coordinate pv to apply these estimates later to
the components of Tµν .

7.2.1. Estimates in the bounded region. First, we recall that the coordinate pv can be written as

(120) pv =
1

2Ω2
(E + pr).

In the following, we denote the coordinate pv of past-trapped and future-trapped geodesics with angular
momentum ℓ > 2

√
3M and particle energy E = E−(ℓ), by pv,+ℓ and pv,−ℓ , respectively. By (120), we deduce

pv,±ℓ (r) :=
1

2Ω2

(
E−(ℓ) + pr,±ℓ (r)

)
, pr,±ℓ (r) = sgn

(
± (r − r−(ℓ))

)√
E2

−(ℓ) − Vℓ(r),

where we have used the mass-shell relation. We will now show a concentration estimate in terms of pv using
the bounds previously derived for pr in Proposition 6.3.1.

Lemma 7.2.1. There exists R > 2M such that for every geodesic γx,p : [0, a] → {r < R} ∩ supp(f) with
angular momentum ℓ ≥ 4M and particle energy E ≥ E0 > 1, we have

(121) |pv(s) − pv,+ℓ (r(s))| ≲ exp
(
− 1

4
√

2M
v(s)

)
.

Proof. By the monotonicity of the map ℓ 7→ E−(ℓ), there exists ℓ0 > 4M such that E0 = E−(ℓ0). As a
result, unstable trapping only holds for ℓ ≥ ℓ0 in supp(f). We assume without loss of generality that f is
supported on {ℓ ≥ ℓ0, |E − E−(ℓ)| ≤ 1

2 (E0 − 1)}, because of the compact support assumption on the initial

data. The geodesics in the complement supp(f) \ ({ℓ ≥ ℓ0, |E − E−(ℓ)| ≤ 1
2 (E0 − 1)}) either cross H+ or

leave the region {r < R}, before the advanced time v is sufficiently large.
The subregion r ∼ r−(ℓ). We first prove the estimate (121) in the region {|r− r−(ℓ)| < ϵ}. By Proposition

6.3.1, there exists ϵ > 0 such that for every geodesic γ : [s1, s2] → {r < R} ∩ supp(f) with angular momentum
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ℓ ≥ 4M and particle energy E ∈ (E−(ℓ) − ϵ, E−(ℓ) + ϵ), we have

|pr(s) − pr,+ℓ (r(s))| ≲ exp
(
− 1

4
√

2M

(
v(s2) − v(s1)

))
,∣∣∣ 2M

1 − E2
− 2M

1 − E2
−(ℓ)

∣∣∣ ≲ exp
(
− 1

4
√

2M

(
v(s2) − v(s1)

))
,

for all (x, p) ∈ supp(f) ∩ {|r − r−(ℓ)| < ϵ}. Thus, the difference E − E−(ℓ) satisfies that

|E − E−(ℓ)| ≲ |E2 − E2
−(ℓ)| = |(pr)2 − (pr,+ℓ )2| ≲ exp

(
− 1

4
√

2M

(
v(s2) − v(s1)

))
.

where we have used that E + E−(ℓ) ≥ 1 for all ℓ ≥ 4M . Moreover, the difference pv − pv,+ℓ satisfies

|pv(s) − pv,+ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr − pr,+ℓ | ≲ exp

(
− 1

4
√

2M

(
v(s2) − v(s1)

))
.

Away from r ∼ r−(ℓ) and r ∼ 2M . We consider next the complement of the domain {|r − r−(ℓ)| < ϵ} as
a subset of {r0 < r < R}. Let us bound the advanced time that geodesics spend in {r0 ≤ r ≤ r−(ℓ) − ϵ} ∪
{r−(ℓ) + ϵ < r < R}. There exists C0 > 0 such that

(122) (pr)2 = E2 − Vℓ(r) > C2
0 > 0,

in the region {r > r0}, since the turning points for these orbits occur for r ∼ r−(ℓ). As a result, for every
geodesic γ contained in {r0 ≤ r ≤ r−(ℓ) − ϵ} ∪ {r−(ℓ) + ϵ < r < R}, we have

(123) ∀s2 ≥ s1, v(s2) − v(s1) ≲
∫ v(s2)

v(s1)

Ω2(r)dv ≤
∫ v(s2)

v(s1)

dv

pv
= s2 − s1 =

∫ r(s2)

r(s1)

dr

pr
≲ R,

where we have used that Ω2pv ≤ E ≤ E1, and (122). We obtain that in finite advanced time every geodesic
leaves {|r − r−(ℓ)| > ϵ} ∩ {r < R}.

By the contraction property of φℓ
− in (69), we have the monotonicity property

(124) ∀ s2 ≥ s1,
∣∣∣φℓ

−

(
x(s2), p(s2)

)∣∣∣ ≤ ∣∣∣φℓ
−

(
x(s1), p(s1)

)∣∣∣.
Let us consider a geodesic γ : [s1, s2] → {r0 ≤ r ≤ r−(ℓ) − ϵ} ∪ {r−(ℓ) + ϵ < r < R} ∩ supp(f). By the
monotonicity property of φ−, and the uniform bound on the advanced time away from the trapped set, we
have that∣∣∣φℓ

−

(
x(s2), p(s2)

)∣∣∣ ≤ ∣∣∣φℓ
−

(
x(s1), p(s1)

)∣∣∣ ≲ exp
(
− 1

4
√

2M
v(s1)

)
≲ exp

(
− 1

4
√

2M
v(s2)

)
,

since (x(s1), p(s1)) can be assumed to be in {r − r−(ℓ) ≤ ϵ}. Finally, we follow the same arguments used in
the subregion r ∼ r−(ℓ) to show that (121) holds. First, one propagates the estimates (117) in Proposition

6.3.1. As a result, we control the difference E2 − E2
−(ℓ), and then the difference pv(s) − pv,+ℓ (r(s)).

The subregion r ∼ 2M . We use first Proposition 4.4.2 to obtain that

r2

ℓ2 + r2
(pv − pv,+ℓ (r))(s2) =

r2

ℓ2 + r2
(pv − pv,+ℓ (r))(s1) exp

(
−
∫ v(s2)

v(s1)

2M

(r2 + ℓ2)r2

(
r2 − ℓ2

M
r + 3ℓ2

)
dv′

)
,

for any piece of geodesic. We remark that the exponent in the RHS of the identity above is negative for
r − 2M sufficiently small. Thus, we have the estimate

|pv(s2) − pv,+ℓ (r(s2))| ≲ |pv(s1) − pv,+ℓ (r(s1))| ≲ exp
(
− 1

4
√

2M
v(s1)

)
≲ exp

(
− 1

4
√

2M
v(s2)

)
since the difference v(s2) − v(s1) is uniformly bounded.

The estimate (121) follows by putting together the estimates performed in the three regions considered.
We note that the constant in the RHS of (121) is uniform among the geodesics under study. □
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We show now the estimates in Theorem 3.1 in the bounded region of spacetime.

Proof of Theorem 3.1 in the bounded region. By Lemma 7.2.1, the support of the distribution function
in the coordinate pv decays exponentially. Then, for all x ∈ {r < R}, the component Tuv[f ] of the energy-
momentum tensor satisfies

1

Ω2
Tuv[f ] =

1

Ω2

∫
pv

∫
pA

∫
pB

f(x, p)pupv
r2
√

det γ

pv
dpvdpAdpB

=
1

4Ω2

∫
pv

∫
pA

∫
pB

f(x, p)(Ω2pu)(Ω2pv)
r2
√

det γ

pv
dpvdpAdpB

≲
∥f0∥L∞

x,p

exp( 1
4
√
2M

v)

∫
r4(gS2 )ABpApB≤L1

r2dpAdpB ≲
∥f0∥L∞

x,p

exp( 1
4
√
2M

v)
,

where we have estimated Ω2pu using Lemma 4.5.4. The same argument shows the decay estimates for the
other components of Tµν .

7.2.2. Estimates in the far-away region. We begin proving a comparison lemma between the retarded time
u(s) and the radial coordinate r(s), along outgoing geodesics in the far-away region.

Lemma 7.2.2. There exists R > 2M such that for every outgoing geodesic γx,p : [0, a] → {r > R} ∩ supp(f)
with angular momentum ℓ ≥ 4M , and particle energy E ≥ E0 > 1, we have u(s) ≲ r(s) for all s ∈ [0, a].

Proof. There exists R > 2M such that every geodesic γx,p : [0, a] → {r > R} ∩ supp(f) is outgoing, since
E > 1 on the support of the distribution f . We can assume that R > 2M is large enough so that

∀(x, p) ∈ {r > R}, pr =
(
E2 − 1 +

2M

r
− ℓ2

r2
+

2Mℓ2

r3

) 1
2 ≥

√
E2 − 1

2
,

for every outgoing geodesic. We are using here that E ≥ E0 > 1. As a result, the parameter s along a
geodesic γ in supp(f) satisfies

(125) s =

∫ r(s)

r(0)

dr

pr
=

∫ r(s)

r(0)

dr√
E2 − Vℓ(r)

≲ r(s).

On the other hand, the coordinate pu satisfies Ω2pu ≤ E ≤ E1, so we have

(126) s =

∫ u(s)

u(0)

du

pu
≥

∫ u(s)

u(0)

Ω2(r)du ≳ u(s),

for every geodesic γ in {r > R} ∩ supp(f). Thus, we have r(s) ≳ u(s) for all s ∈ [0, a]. □

We conclude the proof of Theorem 3.1 with the estimates in the far-away region.

Proof of Theorem 3.1 in the far-away region. By Proposition 4.5.3, the support of the distribution in the
coordinate pv decays like r−1. We are using here that E > 1. Then, for all x ∈ {r > R}, the component
Tuv[f ] of the energy-momentum tensor satisfies

Tuv[f ] =

∫
pv

∫
pA

∫
pB

f(x, p)pupv
r2
√

det γ

pv
dpvdpAdpB

=
1

4

∫
pv

∫
pA

∫
pB

f(x, p)(Ω2pu)(Ω2pv)
r2
√

det γ

pv
dpvdpAdpB

≲ ∥f0∥L∞
x,p

∫
r4(gS2 )ABpApB≤L1

rdpAdpB

≲
∥f0∥L∞

x,p

r3
≲

∥f0∥L∞
x,p

u3
.
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where we used (125)–(126) in the last estimate. The same argument shows the decay estimates for the other
components of Tµν .

7.3. Decay for Vlasov fields supported up to the boundary of D1. The proof of Theorem 3.2 follows
by the same strategy followed in the proof of Theorem 3.1. In the bounded region, the estimates can be
directly extended to fχD1

because the normal hyperbolicity of the sphere of trapped orbits S−(ℓ) holds for
all ℓ ≤ 4M . Let us prove now the decay estimates in the far-away region. We note that there exist constants
E1 ≥ 1 and L1 ≥ 0, such that E(x, p) ∈ [1, E1] and ℓ(x, p) ∈ [0, L0] for all (x, p) ∈ supp(fχD1). These a
priori bounds hold because of the compact support assumption of f0.

7.3.1. Estimates in the far-away region. We first prove a comparison lemma between the retarded time u(s)
and the radial coordinate r(s) along outgoing orbits.

Lemma 7.3.1. There exists R > 2M such that for every outgoing geodesic γx,p : [0, a] → {r > R} ∩ supp(f)

with angular momentum ℓ ≥ 4M , and particle energy E ≥ 1, we have u(s) ≲ r
3
2 (s) for all s ∈ [0, a].

Proof. There exists R > 2M such that every geodesic γx,p : [0, a] → {r > R} ∩ supp(f) is outgoing, since
E ≥ 1 on the support of the distribution f . By the estimate (38) in the proof of Proposition 4.5.3, the radial

coordinate r(s) along outgoing geodesics with E ≥ 1 satisfies pr(s) ≳ r−
1
2 (s). Thus, we have

(127) r
3
2 (s) ≥

∫ r(s)

r(0)

r
1
2 dr ≳

∫ r(s)

r(0)

dr

pr
=

∫ u(s)

u(0)

du

pu
≥

∫ u(s)

u(0)

Ω2(r)du ≳ u(s),

where we used Ω2pu ≤ E ≤ E1. Thus, we have r
3
2 (s) ≳ u(s) for all s ∈ [0, a]. □

We perform now the estimates in Theorem 3.2 in the far-away region.

Proof of Theorem 3.2 in the far-away region. By Proposition 4.5.3, the support of the distribution in the
coordinate pv decays like r−

1
2 .We are using here that E ≥ 1. Thus, for all x ∈ {r > R}, the component

Tuv[fχD1
] of the energy-momentum tensor satisfies

Tuv[fχD1
] =

∫
pv

∫
pA

∫
pB

(fχD1
)(x, p)pupv

r2
√

det γ

pv
dpvdpAdpB

=
1

4

∫
pv

∫
pA

∫
pB

(fχD1)(x, p)(Ω2pu)(Ω2pv)
r2
√

det γ

pv
dpvdpAdpB

≲ ∥f0∥L∞
x,p
r

3
2

∫
r4(gS2 )ABpApB≤L1

dpAdpB

≲
∥f0∥L∞

x,p

r
5
2

≲
∥f0∥L∞

x,p

u
5
3

,(128)

where we used (127) in the last estimate. The same argument shows the decay estimates for the other
components of Tµν [fχD1 ].

7.4. Decay for Vlasov fields supported up to the boundary of D. Let us prove decay in time for the
energy-momentum tensor Tµν [fχD] of a Vlasov field fχD supported on D. The proof of the decay estimates
for the energy-momentum tensor follow by proving decay of the momentum support of the distribution. Note
that there exist E1 ≥ 0 and L1 ≥ 0, such that E(x, p) ∈ [0, E1] and ℓ(x, p) ∈ [0, L1] for all (x, p) ∈ supp(fχD).

We have previously obtained time decay for the energy-momentum tensor Tµν of a Vlasov field f with
initial data compactly supported on D1. In order to use our previous decay estimates, we decompose the
distribution f as

f = f≥1 + f<1 := fχ{E≥1} + fχ{E<1},
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where χ{E≥1} : P → [0, 1] and χ{E<1} : P → [0, 1] are standard characteristic functions. As a result, the
components Tµν [fχD] of the energy-momentum tensor of the Vlasov field fχD satisfy

Tµν [fχD] = Tµν [f≥1χD] + Tµν [f<1χD],

for every µ, ν, where χD : P → R is the characteristic function of D. We will show that Tµν [f≥1χD] decays
faster than Tµν [f<1χD], in both, the bounded and the far-away regions.

Let us now focus on the region {E < 1}. We will analyse the momentum support of the distribution
function in the following four subregions of phase space:

Da =
{

(x, p) ∈ P : ℓ(x, p) ∈
(

2
√

3M, 4M
)
, E(x, p) ∈

(2

3
,

21
√

2

30

)}
,

Db =
{

(x, p) ∈ P : ℓ(x, p) ∈ (2
√

2M, 2
√

3M), E(x, p) ∈
(2

3
,

21
√

2

30

)}
,

Dc =
{

(x, p) ∈ P : ℓ(x, p) ∈ (0, 2
√

3M), E(x, p) ∈
(21

√
2

30
, 1
)}
,

Dd =
{

(x, p) ∈ P : ℓ(x, p) ∈ (2
√

3M, 4M), E(x, p) ∈
(21

√
2

30
, 1
)}
.

In the complementary region of the domain D, given by

De :=
{

(x, p) : E(x, p) < 1
}
\
(
Da ∪ Db ∪ Dc ∪ Dd

)
,

geodesics cross H+ before the advanced time v is sufficiently large.
In the bounded region, we assume without loss of generality that the Vlasov field fχD is supported in

the regions Da, Db, Dc, and Dd. In the far-away region, we assume instead that the Vlasov field fχD is
supported in the regions Dc, and Dd. The regions Da, Db, and De, only concern the decay estimates in the
bounded region.

7.4.1. Estimates in the bounded region. We first show concentration estimates in a neighbourhood of the
sphere {r = 6M} of trapped orbits. We recall that the hyperbolicity of the radial flow on the spheres of

trapped orbits S−(ℓ) degenerates when ℓ = 2
√

3M . We will show inverse polynomial decay estimates in this

regime. We begin considering the case when ℓ ≤ 2
√

3M .

Lemma 7.4.1. For every geodesic γx,p : [0, a] → {r < R} ∩ supp(fχD) with angular momentum ℓ ∈
(2
√

2M, 2
√

3M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have∣∣∣pv(s) − E

2Ω2(s)

∣∣∣ ≲ 1

v3(s)
, if r(s) ≥ r−(ℓ),(129)

|pv(s) − pv,+ℓ (r(s))| ≲ 1

v3(s)
, if r(s) ≤ r−(ℓ).(130)

Proof. In this region of phase space, trapping only holds at S−(2
√

3M) ⊂ {r = 6M}. We also recall that

the stable manifolds W±(2
√

3M) associated to the sphere of trapped orbits S−(2
√

3M), are contained in
{r ≤ 6M}. As a result, we can assume without loss of generality that the geodesics considered in this

lemma are contained in {r ≤ 7M}. We also assume without loss of generality that ℓ ≥ ℓ0 >
4
√
2√
3
M for some

ℓ0 >
4
√
2√
3
M . We make this assumption to avoid any discussion for ℓ ∼ 4

√
2√
3
M where E−(ℓ) is not defined

anymore. See Proposition 6.1.4 for more details.

Let r0 > 2M such that r0 − 2M is small enough. Let ℓ ∈ ( 4
√
2√
3
M, 2

√
3M). We divide the analysis in four

different subregions: when r−(ℓ) ≤ r ≤ 7M , when 5M ≤ r ≤ r−(ℓ), when 2M + r0 ≤ r ≤ 5M , and when
r ≤ r0. We address these subregions in the same order.
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The subregion r−(ℓ) ≤ r ≤ 7M . By Proposition 6.1.7, for every geodesic in {5M ≤ r ≤ 7M} with angular

momentum ℓ ∈ ( 4
√
2√
3
M, 2

√
3M) and particle energy E ∈ ( 2

3 ,
21

√
2

30 ), we have

|pr(s)| ≲ v−3(s), if r(s) ≥ r−(ℓ).

Thus, the difference pv(s) − 1
2Ω−2E satisfies that∣∣∣pv(s) − E

2Ω2(s)

∣∣∣ ≤ 1

2Ω2
|pr(s)| ≲ v−3(s),

where we used the relation pv = 1
2Ω2 (E + pr).

The subregion 5M ≤ r ≤ r−(ℓ). By Proposition 6.1.7, for every geodesic in {5M ≤ r ≤ 7M} with angular

momentum ℓ ∈ ( 4
√
2√
3
M, 2

√
3M) and particle energy E ∈ ( 2

3 ,
21

√
2

30 ), we have

|pr(s) − pr,+ℓ (r(s))| =
∣∣∣ pr√

1 − E2
− (r− − r)

1
2

r
3
2

(
(r − r−)2 +

r3−

r2− − ℓ2

2M r− + ℓ2

( ℓ2

2M
− r−

)) 1
2
∣∣∣ ≲ v−3(s).

Thus, the difference pv − pv,+ℓ satisfies that

|pv(s) − pv,+ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s),

where we have used the estimate for the particle energy in Proposition 6.1.7.
The subregion r0 ≤ r ≤ 5M . The analysis in this subregion follows by the same arguments performed at

the end of the proof of Lemma 7.2.1. We simply propagate to this region the concentration estimate obtained
in the subregion {5M ≤ r ≤ 7M}.

The subregion r ≤ r0. The analysis in this subregion follows by the same arguments performed at the end
of the proof of Lemma 7.2.1. Specifically, we use the red-shift effect in the form presented in Proposition
4.4.2.

The estimates (129)–(130) follow by putting together the estimates performed in the three subregions
considered above. □

We will now consider the case of orbits with angular momentum ℓ ≥ 2
√

3M . In the next lemma, we
estimate the geodesic flow in a neighbourhood of the homoclinic orbits at the energy level {E = E−(ℓ)} when
ℓ is strictly smaller than 4M .

Let us recall that there exists a uniform constant A > 2M such that −a(ℓ) ≤ A for every geodesic with

ℓ ∈ (2
√

3M, 4M) and E ∈ ( 2
3 ,

21
√
2

30 ). This property was obtained in the proof of Proposition 6.2.5.

Lemma 7.4.2. For every geodesic γx,p : [0, a] → {r < R} ∩ supp(fχD) with angular momentum ℓ ∈
(2
√

3M, 4M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have∣∣∣pv(s) − E

2Ω2(r(s))

∣∣∣ ≲ 1

v3(s)
, if r ∈ [−a(ℓ), R+A],(131)

|pv(s) − pv,+ℓ (r(s))| ≲ 1

v3(s)
, if pr ≥ 0 and r ∈ [r−(ℓ),−a(ℓ)],(132)

|pv(s) − pv,−ℓ (r(s))| ≲ 1

v3(s)
, if pr ≤ 0 and r ∈ [r−(ℓ),−a(ℓ)],(133)

|pv(s) − pv,+ℓ (r(s))| ≲ 1

v3(s)
, if r ∈ [2M, r−(ℓ)].(134)

Proof. In this region of phase space, unstable trapping only holds for ℓ ≤ ℓ1 for some ℓ1 < 4M . The
homoclinic orbits associated to the sphere of trapped orbits S−(ℓ), are contained in the region {r ≤ A} for
A > 2M . Thus, we can assume without loss of generality that the geodesics considered in this lemma are
contained in {r ≤ A}.
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Let r0 > 2M such that r0 − 2M is small enough. Let ℓ ∈ (2
√

3M, ℓ1). We divide the analysis in five
different subregions: when −a(ℓ) ≤ r ≤ R + A, when r−(ℓ) ≤ r ≤ −a(ℓ), when 5M ≤ r ≤ r−(ℓ), when
r0 ≤ r ≤ 5M , and when r ≤ r0. We address these subregions in the same order.

The subregion −a(ℓ) ≤ r ≤ R + A. By Proposition 6.2.2, for every geodesic in −a(ℓ) ≤ r ≤ R + A with

angular momentum ℓ ∈ (2
√

3M, 4M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have

|pr(s)| ≲ 1

v3(s)
, if r(s) ≥ −a(ℓ).

Thus, the difference pv(s) − 1
2Ω−2E satisfies that∣∣∣pv(s) − E

2Ω2(s)

∣∣∣ ≤ 1

2Ω2
|pr(s)| ≲ 1

v3(s)
,

where we used that pv = 1
2Ω2 (E + pr).

The subregion r−(ℓ) ≤ r ≤ −a(ℓ). By Proposition 6.2.2, for every geodesic in r−(ℓ) ≤ r ≤ −a(ℓ) with

angular momentum ℓ ∈ (2
√

3M, 4M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have

|pr(s) − pr,+ℓ (r(s))| ≲ 1

v3(s)
, if pr ≥ 0,

|pr(s) − pr,−ℓ (r(s))| ≲ 1

v3(s)
, if pr ≤ 0.

Thus, the differences pv − pv,+ℓ and pv − pv,−ℓ satisfy that

|pv(s) − pv,+ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s), if pr ≥ 0,

|pv(s) − pv,−ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,−ℓ (r(s))| ≲ v−3(s), if pr ≤ 0,

where we have used the estimate for the particle energy in Proposition 6.2.2.
The subregion 5M ≤ r ≤ r−(ℓ). By Proposition 6.2.2, for every geodesic in 5M ≤ r ≤ r−(ℓ) with angular

momentum ℓ ∈ (2
√

3M, 4M) and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have

|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s).

Thus, the difference pv − pv,+ℓ satisfies that

|pv(s) − pv,+ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s),

where we have used the estimate for the particle energy in Proposition 6.2.2.
The regions r0 ≤ r ≤ 5M and r ≤ r0 can be taken care in the same fashion as in the proof of Proposition

7.4.1. The estimates (131)–(133) follow by putting together the estimates performed in the five subregions
considered above. □

Next, we will show concentration estimates in a neighbourhood of the parabolic manifolds at infinity. The
leading contribution in the energy-momentum tensor in the bounded region comes from this region. Let us
recall again that the coordinate pv can be written as

(135) pv =
1

2Ω2
(E + pr).

We denote the coordinate pv of past-trapped and future-trapped geodesics with angular momentum ℓ and
particle energy E = 1, by pv,+ℓ,1 and pv,−ℓ,1 , respectively. By (135), we deduce

pv,±ℓ,1 (r) =
1

2Ω2

(
E + pr,±ℓ,1 (r)

)
, pr,±ℓ,1 (r) = ∓

√
1 − Vℓ(r),

where we have used the mass-shell relation. We will now show a concentration estimate for pv using the
bounds for pr in Propositions 6.1.2 and 6.2.1. We begin considering the case when ℓ ≤ 2

√
3M .
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Lemma 7.4.3. For every geodesic γx,p : [0, a] → {r < R} ∩ supp(fχD) with angular momentum ℓ ∈
(0, 2

√
3M) and particle energy E ∈ ( 21

√
2

30 , 1), we have

|pv(s) − pv,−ℓ,1 (r(s))| ≲ 1

v
1
3 (s)

, if pr(s) ≥ 0,(136)

|pv(s) − pv,+ℓ,1 (r(s))| ≲ 1

v
1
3 (s)

, if pr(s) ≤ 0.(137)

Proof. We can assume with out loss of generality that every geodesic γ is incoming in the bounded region
{r < R}, by the compact support assumption on the initial data. Let r0 > 2M such that r0 − 2M is small
enough. We divide the analysis in three different subregions: when r ≥ 16M , when r0 ≤ r ≤ 16M , and when
r ≤ r0. We address these subregions in the same order.

The subregion r ≥ 16M . By Proposition 6.1.2, for every geodesic in {r ≥ 16M} with angular momentum

ℓ ∈ (0, 2
√

3M) and particle energy E ∈ ( 21
√
2

30 , 1), we have

|pr(s) − pr,+ℓ,1 (r(s))| =
∣∣∣pr +

√
2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2
∣∣∣ ≲ v−

1
3 (s).

Thus, the difference pv − pv,+ℓ,1 satisfies that

|pv(s) − pv,+ℓ,1 (r(s))| ≤ 1

2Ω2
|E − 1| +

1

2Ω2
|pr(s) − pr,+ℓ,1 (r(s))| ≲ v−

1
3 (s),

where we have used the 1
2 -Hölder continuity of the square root, and the estimate for the particle energy in

Proposition 6.1.2.
The subregion r0 ≤ r ≤ 16M . The analysis in this subregion follows by the same arguments performed at

the end of the proof of Lemma 7.2.1. We simply propagate to this region the concentration estimate obtained
in the subregion {r > 16M}.

The subregion r ≤ r0. The analysis in this subregion follows by the same arguments performed at the end
of the proof of Lemma 7.2.1. Specifically, we use the red-shift effect in the form presented in Proposition
4.4.2.

The estimate (137) follows by putting together the estimates performed in the three subregions considered
above. In the region r0 ≤ r ≤ 16M , we also need the estimates in the region r ≥ 16M . In the region r ≤ r0,
we also need the estimates in the region r0 ≤ r ≤ 16M and r ≥ 16M . □

We will now consider the case when ℓ ∼ 4M . In this regime, the homoclinic orbits move towards infinity
as ℓ→ 4M . The homoclinic orbits become the stable manifolds of the spheres S−(4M) and S∞(4M), in the
limit when ℓ→ 4M . For this reason, we need to control the unstable trapping and the parabolic trapping at
infinity at the same time.

Lemma 7.4.4. For every geodesic γx,p : [0, a] → {r < R} ∩ supp(fχD) with angular momentum ℓ ∈
(2
√

3M, 4M) and particle energy E ∈ ( 21
√
2

30 , 1), we have

|pv(s) − pv,+ℓ (r(s))| ≲ 1

v3(s)
, if pr ≥ 0 and r ∈ [r−(ℓ), R],(138)

|pv(s) − pv,+ℓ,1 (r(s))| + |pv(s) − pv,−ℓ (r(s))| ≲ 1

v
1
3 (s)

, if pr ≤ 0 and r ∈ [r−(ℓ), R],(139)

|pv(s) − pv,+ℓ,1 (r(s))| + |pv(s) − pv,+ℓ (r(s))| ≲ 1

v
1
3 (s)

, if r ∈ [2M, r−(ℓ)].(140)

Proof. By the assumption that ℓ ∈ (2
√

3M, 4M) and E ∈ ( 21
√
2

30 , 1), unstable trapping can only hold for

ℓ ≥ ℓ0 for ℓ0 > 2
√

3M . In particular, there is no degenerate trapping at ISCO in this case. Also, we can
assume without loss of generality that the geodesics we consider satisfy that ℓ ≥ ℓ0 > 2

√
3M . The geodesics
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in the complementary region either cross H+ or leave the region {r < R}, before the advanced time v is
sufficiently large.

In this region of phase space, there are homoclinic orbits for every ℓ ∈ (ℓ0, 4M). For these homoclinic orbits
we have that −a(ℓ) ≥ A, where A > 2M is the constant set in Proposition 6.2.5. Under our assumptions,
we can take A > R, so the turning points at −a(ℓ) take place in the far-away region. In other words, the
geodesics we consider here are always ingoing or outgoing in the bounded region.

Let r0 > 2M such that r0−2M is small enough. Let ℓ ∈ (ℓ0, 4M). We divide the analysis in four different
subregions: when r−(ℓ) ≤ r ≤ R, when 5M ≤ r ≤ r−(ℓ), when r0 ≤ r ≤ 5M , and when r ≤ r0. We address
these subregions in the same order.

The subregion r−(ℓ) ≤ r ≤ R. By Proposition 6.2.5 and the Remark 6.2.2, for every geodesic in r−(ℓ) ≤
r ≤ R with angular momentum ℓ ∈ (2

√
3M, 4M) and particle energy E ∈ ( 2

3 ,
21

√
2

30 ), we have

|pr(s) − pr,+ℓ (r(s))| ≲ 1

v3(s)
, if pr ≥ 0,

|pr(s) − pr,−ℓ (r(s))| ≲ 1

v3(s)
, if pr ≤ 0.

Thus, the differences pv − pv,+ℓ and pv − pv,−ℓ satisfy that

|pv(s) − pv,+ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s), if pr ≥ 0,

|pv(s) − pv,−ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,−ℓ (r(s))| ≲ v−3(s), if pr ≤ 0,

where we have used the estimate for the particle energy in Proposition 6.2.5 and Remark 6.2.2.
In this subregion, we also need to control the geodesic flow for E ∼ 1. This analysis is required because, as

we will show in Lemma 7.4.6, there are incoming particles with E ∼ 1 that enter this region. By Proposition
6.2.5 and the Remark 6.2.2, for every geodesic in r−(ℓ) ≤ r ≤ R with angular momentum ℓ ∈ (2

√
3M, 4M)

and particle energy E ∈ ( 2
3 ,

21
√
2

30 ), we have

|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s).

Thus, the difference pv − pv,+ℓ satisfies that

|pv(s) − pv,+ℓ (r(s))| ≤ 1

2Ω2
|E − E−(ℓ)| +

1

2Ω2
|pr(s) − pr,+ℓ (r(s))| ≲ v−3(s)

where we have used the estimate for the particle energy in Proposition 6.2.5 and Remark 6.2.2.
The subregion 5M ≤ r ≤ r−(ℓ). The analysis in this subregion follows by the same arguments performed

in the bounded region, but considering only the unstable manifold of the sphere of trapped orbits S−(ℓ).
The subregion r0 ≤ r ≤ 5M . The analysis in this subregion follows by the same arguments performed at

the end of the proof of Lemma 7.2.1. We simply propagate to this region the concentration estimate obtained
in the subregion {r > 5M}.

The subregion r ≤ r0. The analysis in this subregion follows by the same arguments performed at the end
of the proof of Lemma 7.2.1. Specifically, we use the red-shift effect in the form presented in Proposition
4.4.2.

The estimates (138)–(140) follow by putting together the estimates performed in the three subregions
considered above. In the region 5M ≤ r ≤ r−(ℓ), we also need the estimates in the region r ≥ r−(ℓ). In the
region r0 ≤ r ≤ 5M , we also need the estimates in the regions where 5M ≤ r ≤ r−(ℓ) and r ≥ r−(ℓ). In the
region r ≤ r0, we need the estimates in all the previous regions. □

We can now prove the estimates of Theorem 3.3 in the bounded region of spacetime.

Proof of Theorem 3.3 in the bounded region. By Lemma 7.4.1, Lemma 7.4.2, Lemma 7.4.3, and Lemma
7.4.4, the support of the distribution function in the coordinate pv decays like v−

1
3 . Therefore, for all
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x ∈ {r < R}, the component Tuv[f<1χD] of the energy-momentum tensor satisfies

1

Ω2
Tuv[f<1χD] =

1

Ω2

∫
pv

∫
pA

∫
pB

(f<1χD)(x, p)pupv
r2
√

det γ

pv
dpvdpAdpB

=
1

4Ω2

∫
pv

∫
pA

∫
pB

(f<1χD)(x, p)(Ω2pu)(Ω2pv)
r2
√

det γ

pv
dpvdpAdpB

≲
∥f0∥L∞

x,p

v
1
3

∫
r4(gS2 )ABpApB≤L1

r2dpAdpB ≲
∥f0∥L∞

x,p

v
1
3

,

where we have estimated Ω2pu using Lemma 4.5.4. Finally, we use the estimates obtained in the previous
two sections for f≥1χD, in order to show that

1

Ω2
Tuv[fχD] =

1

Ω2
Tuv[f≥1χD] +

1

Ω2
Tuv[f<1χD] ≲

∥f0∥L∞
x,p

u
1
3 r2

.

The same argument shows the decay estimates for the other components of Tµν [fχD].

7.4.2. Estimates in the far-away region. Let us show concentration estimates in a neighbourhood of the
parabolic manifolds. We start with the case when ℓ ≤ 2

√
3M .

Lemma 7.4.5. For every geodesic γx,p : [0, a] → {r > R} ∩ supp(fχD) with angular momentum ℓ ∈
(0, 2

√
3M) and particle energy E ∈ ( 21

√
2

30 , 1), we have

|pv(s) − pv,−ℓ,1 (r(s))| ≲ 1

u
1
3 (s)

, if pr(s) ≥ 0,(141)

|pv(s) − pv,+ℓ,1 (r(s))| ≲ 1

u
1
3 (s)

, if pr(s) ≤ 0.(142)

Proof. We divide the analysis in two different subregions: when pr ≥ 0 and when pr ≤ 0. We address these
subregions in the same order.

The subregion pr ≥ 0. By Proposition 6.1.2, for every geodesic in {r > R} with angular momentum

ℓ ≤ 2
√

3M and particle energy E ∈ ( 21
√
2

30 , 1), we have

|pr(s) − pr,−ℓ,1 (r(s))| =
∣∣∣pr −

√
2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2
∣∣∣ ≲ u−

1
3 (s).

Thus, the difference pv − pv,−ℓ,1 satisfies that

|pv(s) − pv,−ℓ,1 (r(s))| ≤ 1

2Ω2
|E − 1| +

1

2Ω2
|pr(s) − pr,−ℓ,1 (r(s))| ≲ u−

1
3 (s),

where we have used the 1
2 -Hölder continuity of the square root, and the estimate for the particle energy in

Proposition 6.1.2.
The subregion pr ≤ 0. The estimate (142) for incoming geodesics is obtained similarly. In this case, we

estimate the difference pv(s) − pv,+ℓ,1 (r(s)) instead of pv(s) − pv,−ℓ,1 (r(s)).

The estimate (142) follows by putting together the estimates performed in the two subregions considered.
We note that the constant in the RHS of (142) is uniform among the geodesics under study. □

We will now consider the case when ℓ ∼ 4M . In this regime, we deal with the parabolic trapping at
infinity. In the presence of the homoclinic orbits, we can still perform the analysis in the far-away region as
in Lemma 7.4.5.
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Lemma 7.4.6. For every geodesic γx,p : [0, a] → {r > R} ∩ supp(fχD) with angular momentum ℓ ∈
(2
√

3M, 4M) and particle energy E ∈ ( 21
√
2

30 , 1), we have

|pv(s) − pv,−ℓ,1 (r(s))| ≲ 1

u
1
3 (s)

, if pr ≥ 0 and r ∈ [R,∞),(143)

|pv(s) − pv,+ℓ,1 (r(s))| ≲ 1

u
1
3 (s)

, if pr ≤ 0 and r ∈ [R,∞).(144)

Proof. By the assumption that ℓ ∈ (2
√

3M, 4M) and E ∈ ( 21
√
2

30 , 1), unstable trapping can only hold for

ℓ ≥ ℓ0 for ℓ0 > 2
√

3M . Also, we can assume without loss of generality that the geodesics we consider satisfy
that ℓ ≥ ℓ0 > 2

√
3M .

In this region of phase space, there are homoclinic orbits for every ℓ ∈ [ℓ0, 4M). For these homoclinic
orbits we have that −a(ℓ) ≥ A, where A > 2M is the constant set in Proposition 6.2.5. We can assume that
A > R, so the turning points at −a(ℓ) take place in the far-away region.

Let ℓ ∈ [ℓ0, 4M). We divide the analysis in two different subregions: when pr ≥ 0 and when pr ≤ 0. We
address these subregions in the same order.

The subregion pr ≥ 0. By Proposition 6.2.1, for every geodesic in {r > R} with angular momentum

ℓ ∈ (2
√

3M, 4M) and particle energy E ∈ ( 21
√
2

30 , 1), we have

|pr(s) − pr,−ℓ,1 (r(s))| =
∣∣∣pr −

√
2M

r
3
2

(
r2 − ℓ2

2M
r + ℓ2

) 1
2
∣∣∣ ≲ u−

1
3 (s).

Thus, the difference pv − pv,−ℓ,1 satisfies that

|pv(s) − pv,−ℓ,1 (r(s))| ≤ 1

2Ω2
|E − 1| +

1

2Ω2
|pr(s) − pr,−ℓ,1 (r(s))| ≲ u−

1
3 (s),

where we have used the 1
2 -Hölder continuity of the square root, and the estimate for the particle energy in

Proposition 6.2.1.
The subregion pr ≤ 0. The estimate (142) for incoming geodesics is obtained similarly. In this case, we

estimate the difference pv(s) − pv,+ℓ,1 (r(s)) instead of pv(s) − pv,−ℓ,1 (r(s)). □

We conclude this section with the proof of Theorem 3.3 in the far-away region.

Proof of Theorem 3.3 in the far-away region. By Lemma 7.4.5 and Lemma 7.4.6, the support of the
distribution function in the coordinate pv decays like u−

1
3 . Then, for all x ∈ {r > R}, the component

Tuv[f<1χD] of the energy-momentum tensor satisfies

Tuv[f<1χD] =

∫
pv

∫
pA

∫
pB

(f<1χD)(x, p)pupv
r2
√

det γ

pv
dpvdpAdpB

=
1

4

∫
pv

∫
pA

∫
pB

(f<1χD)(x, p)(Ω2pu)(Ω2pv)
r2
√

det γ

pv
dpvdpAdpB

≲
∥f0∥L∞

x,p

u
1
3

∫
r4(gS2 )ABpApB≤L1

r2dpAdpB ≲
∥f0∥L∞

x,p

u
1
3 r2

,

where we have used the previous bound on the momentum coordinate pv along the geodesics with particle
energy E < 1 in the far-away region. As a result, we can use the estimate (128) for f≥1, to show that

Tuv[fχD] = Tuv[f≥1χD] + Tuv[f<1χD] ≲
∥f0∥L∞

x,p

u
1
3 r2

.

The same argument shows the decay estimates for the other components of Tµν [fχD].
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